SJG Environmental Limited **Edwards** Centre The Horsefair Hinkley Leicestershire **LE10 0AN**

Telephone : (01902) 850045 Mobile : 07831 195131

> **Environmental Protection Act** Pollution Prevention & Control

PARTICULATE EMISSION TEST (BS EN 13284-1:2017)

on

AGGREGATE DRYING PLANT BAG FILTER EXHAUST

for

CPI MORTARS LTD 29 MEAD PARK RIVERWAY HARLOW ESSEX CM20 2SE

Tested By: A. Tellund.

Date Of Test : 03.12.18 Date Of Report: 16.12.18 Report No: 2953

A. Yelland MCERTS Level 2 Team Leader (MM 02 130) SJG Environmental Limited Registered in England No. 3878034 Registered Office Edwards Centre The Horsefair Hinckley Leicestershire LE10 0AN

CON	TENTS	PAGE NO.
EXE	CUTIVE SUMMARY	3
1. BA	 2.2 Sampling procedure 2.3 Sampling equipment 2.4 Preparation for sampling 2.4.1 Filter preparation 2.4.2 Sampling location 2.5 Sample collection 2.6 Analysis of results 2.7 Calculation of results 3. QUALITY ASSURANCE 3.1 Location 3.2 Methods 3.3 Test team 4. ON-SITE SUMMARY/MEASURMENTS 4.1 Preliminary stack survey 4.2 Leak check result 5. SAMPLING RECORDS 5.1 Process conditions 5.2 Sampling results 5.3 Calculations 5.4 Sample blank 	4
2. M(ONITORING PROTOCOL	4
2.1	Test method and references	4
2.2	Sampling procedure	4
2.3	Sampling equipment	5
2.4	Preparation for sampling	5
	2.4.1 Filter preparation	5
	2.4.2 Sampling location	5
2.5	Sample collection	6
2.6	Analysis of results	6
2.7	Calculation of results	7
3. Q	UALITY ASSURANCE	8
3.1	Location	8
3.2	Methods	8
3.3	Test team	8
4. O	N-SITE SUMMARY/MEASURMENTS	9
4.1		10
4.2	Leak check result	11
5. SA	AMPLING RECORDS	12
5.1	Process conditions	12
5.2		12
5.3		13-16
5.4	-	17
5.5	Sampling Conditions	18
5.6	Weighing Results	18
6. U	NCERTAINTY CALCULATIONS	19-20

EXECUTIVE SUMMARY

EMISSIONS SUMMARY						
Determined	Units Results		Uncertainty	Limit		
			+/-			
Particulate Concentration (STP)	mg/m ³	6.08	0.17	25		
Mass Emission (STP)	kg/hr	0.19	5.07	-		
Stack Temperature	°C	62	-	-		
Gas Velocity	m/s	16.19	-	-		
Stack Volume Flow Rate (Actual)	m ³ /hr	37076	-	-		
Stack Volume Flow Rate (STP)	m³/hr	29901	-	-		

All results are reported at reference conditions of 273K, 101.3kPa, wet gas.

EXECUTIVE SUMMARY

MONITORING TIMES							
Determined	Sampling Date	Sampling Times	Sampling	g Duration			
Total Particulate Matter Run 1	03.12.18	14.00 - 14.32	32	minutes			
Total Particulate Matter Run 2	03.12.18	14.38 - 15.10	32	minutes			
Preliminary Stack Traverse	03.12.18	13.55		-			

EXECUTIVE SUMMARY

PROCESS DETAILS				
Determined	Process Details			
Process description	AGGREGATE DRYING PLANT			
Continuous or Batch	Continuous - Sand @ 35tph.			
Particulate type	Sand			
Abatement	Bag filter			
Appearance of plume	No visible discharge.			

EXECUTIVE SUMMARY

MONITORING METHODS						
Determined Method Technical Limit of Calculated						
Procedure Detection MU +/-%						
TPM	BS EN 13284-1	EL18	0.06	5.9%		
Velocity	BS EN ISO 16911-1	EL20	-	-		
Volumetric Flow	BS EN ISO 16911-1	EL20	-	-		

1. BACKGROUND INFORMATION

Particulate emission testing was undertaken by SJG Environmental Limited, on the sand drying plant exhaust at CPI Mortars, Harlow site.

The purpose of the emission testing was to ensure compliance with the requirements of the permit issued by the Local Authority under The Environmental Permitting (England and Wales) Regulations 2010.

2. MONITORING PROTOCOL

2.1 Test Method and references

Isokinetic sampling of the contained emission sources was undertaken using the APEX Instruments Inc Method Five isokinetic sampling apparatus in accordance with the main procedural requirements within the following British Standards and Technical Guidance Notes:-

* BS EN 13284-1:2017 - Stationary source emissions. Determination of low range mass concentration of dust.

* Environment Agency - Technical Guidance Document (Monitoring) M1 Sampling requirements for monitoring stack emissions to air from industrial installations; and

* Environment Agency - Technical Guidance Document (Monitoring) M2 Monitoring of Stack Emissions to Air.

2.2 Sampling procedure

The work carried out was, as far as was reasonably practical, in accordance with BS EN 13284-1:2017.

Isokinetic flow means that sample gases laden with particulates are drawn off at the same velocity as the free stream velocity in the flue. Isokinetic sampling thus avoids possible inertial effects of particulates approaching the vicinity of the inlet nozzle which may result in significant error.

The Apex Instruments test equipment was designed to meet the sampling requirements of US EPA Method 5 and with a modified nozzle design, meets the sampling requirements of BS EN 13284-1.

The principle of the standard is to draw a known volume of dust laden gas isokinetically through a filter. The weight gain on the filter, after sampling, divided by the gas sample volume equates to the particulate concentration, which in turn can be used to calculate a mass emission.

2.3 Sampling equipment

The test equipment is inspected prior to use and it's calibration status observed. This includes:-

- * *Pitot Tube* All pitot tubes are checked for damage, alignment and that there are no blockages;
- * *Manometer* Check of oil levels, connectors and orientation level;

* *Thermocouple* - Temperature is measured using k type thermocouples. Each thermocouple is inspected for calibration and damage. Digital temperature meters are used in conjunction with k type thermocouples which are also checked for calibration dates;

* Gas meter - The calibration of the gas meter is checked before and after sampling using a critical orifice.

* *Nozzles* - All nozzles used have been constructed in accordance with BS EN 13284-1. Each nozzle is checked for damaged and measured using a Vernier calliper on at least 3 planes. Non conforming nozzles will be rejected.

* *Balance* - A Mettler Toledo balance is used to weigh filters. It is calibrated yearly by the manufacturer and checked daily by in-house weights.

* *Filters* - Quartz membrane filters with a collection efficiency of >99.5% at 0.3microns.

2.4 Preparation for sampling

2.4.1 Filter preparation

Filters are pre-conditioned before arrival on site. The filters are dried in an oven at 180°C for a period of at least one hour and then placed to cool in a desiccator for at least four hours. The filters are then weighed on a five figure balance and placed in individual transport containers. Spare Filters are prepared to obtain blank values.

2.4.2 Sampling location

No site visit was undertaken prior to undertaking the sampling procedure, as monitoring had previously been undertaken at the site, during which time the sampling position, working platform, sampling ports, access and safety precautions were found to be satisfactory.

The internal dimension of the flue was known from previous monitoring undertaken. However, further measurements were taken to check that the internal diameter had not changed.

2.4.2 Sampling location - cont.

Prior to sampling a pressure and temperature survey, using a pitot static tube, a micromanometer, a digital thermometer and a nickel-chromium/nickel-aluminium thermocouple, is carried out to check whether the flow conditions meet with the requirements of BS EN 16911. From this initial survey sample locations, isokinetic flow rates, nozzle size, and sample period can be worked out.

2.5 Sample collection

A leak check is carried out before and after sampling to confirm all the suction is drawn through the nozzle.

With the required isokinetic flow rates known the sample probe is inserted into the stack at 90° to the gas flow, this is to stop any particulate matter impinging on the filter before sampling.

The filter head and probe were allowed to obtain the stack gas temperature.

The initial gas meter reading was noted and the suction device and timer started. The correct flow rate for isokinetic sampling was set and the nozzle positioned to face parallel to the gas flow.

Sampling was then carried out for the planned duration and number of sample points, recording all the necessary data for final calculations. On completion, the suction device and timer were stopped and the final gas meter volume recorded.

The probe was removed from the process stack and a further leak test carried out prior to removal of the filter, which was subsequently removed and placed in a storage container.

Any residual particulates upstream of the filter was washed with acetone into an appropriate beaker.

Repeat all of the above procedures to obtain duplicate samples.

At all times during the sampling procedure the sampling technicians were in contact with the process operator to ensure that the plant was in full production and there were no changes in the process that might affect the representative nature of the samples collected.

2.6 Analysis of samples

On returning to the laboratory, the used filters were dried in an oven at 160°C for a minimum of one hour and then desiccated and weighed as before. The water/acetone washings are first evaporated, without boiling, then dried and weighed as above. The total particulate mass is the sum of the differential filter weight added to the differential water/acetone rinsings component.

2.7 Calculation of results

The calculations were made using the formula specified in BS EN 13284-1.

The recorded filter weights, velocity, temperature, sampling duration and internal flue dimensions were then used to calculate:-

- * the mass rate of solids emission in kg/hr; and
- * the solids concentration in mg/m^3 .

3. QUALITY ASSURANCE

3.1 Location

SAMPLING LOCATION							
Determined	Value	Value Units Requirement		Compliant	Method		
Lowest differential pressure	112	Pa	>= 5Pa	Yes	BS EN 15259		
Highest differential pressure	184	Pa	-	-			
Ratio of gas pressures	1.6	Pa	<9:1	Yes	BS EN 15259		
Mean gas velocity	16.2	m/s	-	-	-		
Temperature deviation	335	K	<10%	Yes	BS EN 13284		
Max angle of flow	<15	o	<15°	Yes	BS EN 15259		
No local negative flow	Yes	-	-	Yes	BS EN 15259		

Duct Details						
Value Units						
Shape	Circular	-				
Depth	0.90	m				
Width	-	m				
Area	0.64	m^2				
Port	0.08	m				

Duct Details				
Isokinetic				
Sample port size	4" BSP			
Number of lines used	2			
Number of points/line	2			
Duct orientation	Vertical			
Filtration for TPM	In stack			

3.2 Methods

MONITORING METHODS						
Determined Method Technical						
Procedure						
TPM	Gravimetric	EL18				
H2O	Gravimetric	EL5				

3.3 Test Team

MONITORING TEAM								
Personnel MCERTS MCERTS TE/H&S Qualifications								
	Number	Level	Expiry	TE1	H&S			
Andrew Yelland	MM 02 130	MCERTS Level 2	Jul-19	Apr-23	Jul-19			
Ryan Carkeek	-	-	-	-	-			

4. ON-SITE SUMMARY/MEASURMENTS

TOTAL PARTICULATE MATTER SUMMARY							
Determined Sampling Times Concentration Uncertainty Limit							
		mg/m ³	mg/m ³	mg/m ³			
Run 1	14.00 - 14.32	5.27	0.17	50			
Run 2	14.38 - 15.10	6.89	0.19	50			
Blank	-	0.06	-	-			

FILTER SUMMARY								
Determined Filter No Filter Filter Acetone Combined								
	Start Weight g Start Weight g Rinse Weight g Mass Gained g							
Run 1	4	0.05609	0.05874	0.00002	0.00267			
Run 2	5	0.05625	0.05978	0.00003	0.00356			
Blank	6	0.05593	0.05595	0.00001	0.00003			

STANDARD UNCERTAINTY SUMMARY						
Measured Quantities	Value	Standar	d uncertainty	Uncertainty %	Requi	rement of std
Sampled Volume - V _m	0.5801	uVm	0.001 m^3	0.17	<	=2% Pass
Sampled gas Temp - T _m	291	uTm	2 k	0.69	<	=1% Pass
Sampled gas Pressure - pm	100.1	$u \rho_m$	0.5 kPa	0.50	<	=1% Pass
Sampled gas Humidity - Hm	4.33	uH _m	1 % by vol	0.23	<	=1% Pass
Oxygen content - O2,m	18.6	uO _{2,m}	0.1 % by vol	0.54	<	=5% Pass
Mass particulate - m	2.67	um	0.01 mg	0.37	0.04 <	5% of limit val
Note - Sampled gas humidity, ten	nperature ar	nd pressure ar	e values at the gas i	meter		Pass
Leak - L	0.49		%	0.49	<	=2% Pass
Uncollected Mass - UCM	0.03		mg	1.12	<	=10% Pass
(Instack filter - no rinse)						

MOISTURE SUMMARY						
RUN Trap Trap Difference Volume Bwo						
	Start Weight g	End Weight g	g	sampled m ³	%	
Run 1	538.6	557.1	18.5	0.5068	4.33	
Run 2	541.3	560.4	19.1	0.5167	4.38	

4.1 Preliminary stack survey

On Site Velocity and Flow Data

Company	CPI MORTARS LTD	Stack Diameter	0.90	m
Site	29 MEAD PARK	Area	0.64	m ²
Location	AGGREGATE DRYING PLANT	Sample points required	4	
Job No	2953	Barometric Pressure	100.1	kPa
Operators	AJY/RJC	Stack Pressure	0.03	kPa
		Pitot Tube Coefficient	0.997	

Preliminary readings taken before sampling					
	Pitot	Traverse A	Pitot Traverse B		
Pitot	ΔP	Temp	ΔP	Temp	
Settings	ра	°C	ра	°C	
1	156	61	116	62	
2	152	62	123	62	
3	129	62	127	62	
4	123	61	119	62	
5	112	61	114	62	
6	115	61	119	62	
7	132	62	144	61	
8	138	62	172	61	
9	161	62	178	61	
10	167	62	184	61	
Mean	139	62	140	62	

4.2 Leak check results

PITOT LEAK CHECK							
	Pre	traverse leak rate		Post	traverse leak rate		
Run	Start value	End value	Difference	Start value	End value	Difference	
	Ра	Ра	%	Ра	Ра	%	
Run 1	250	250	Pass	250	250	Pass	
Run 2	250	250	Pass	250	250	Pass	

S-TYPE STAGNATION CHECK					
Run	Stagnation	Reference	Difference		
	Pa	Ра	Permitted +/- 10 Pa		
Run 1	45	45	Pass		
Run 2	45	45	Pass		

SAMPLE TRAIN LEAK CHECK						
	Mean Sampling	Pre-sampling	Post-sampling	Acceptable	Maximum	
Run	Rate	Leak Rate	Leak Rate	Leak Rate	Leak Rate	
	litres/min	litres/min	litres/min	litres/min	%	
Run 1	20.28	0.10	0.10	0.41	Yes	
Run 2	20.40	0.08	0.08	0.41	Yes	

SAMPLE TRAIN LEAK CHECK					
	Blank Emission Limit Acceptable Blank Blank Valu				
Run	Value	Value	Value	Acceptable	
	mg/m ³	mg/m ³	mg/m ³	mg/m ³	
Blank 1	0.06	25	3	Yes	

5. SAMPLING RECORDS

5.1 **Process Conditions**

Arrestment Plant:	Bag filter
Particulate Type:	Sand
Plant Loading:	Continuous - Sand @ 35tph.
Appearance of plume:	No visible discharge.

5.2 Sampling Results

	Test Run No. 1.	Test Run No. 2.	Average
Time of Test:	14.00 - 14.32	14.38 - 15.10	
Sampling Duration: (mins)	32	32	
Gas Temperature (°C)	62	62	62
Mean Velocity at Sampling Points: (m/s)	17.21	17.32	17.27
Gas Flow Rate at STP (1): (m ³ /min)	506.7	509.1	507.9
Particulate Loading at STP (1): (mg/m ³)	5.27	6.89	6.08
Particulate at Normalised Conditions (2): (mg/m ³)			

(1) Particulate stated at 273K, 101.3kPa without correction for water vapour.

(2) State normalised conditions (eg 11% O_{2} , etc).

5.3 - Calculations Sample Run No. 1

On-site m	easurements				
O2 =	18.6 %	CO2 =	1.3 %	N2 =	80.1 %
Bws =	0.04	Ps =	100.1 kPa	Ts =	334.8 K
Md = (0 =	28.95 g/g mole Iolecular weight	0.32 x %O	$(0.28 \times \%N_2)$ + (0.28 × %N_2))	
0	velocity at samp	ole points			
	$p \ge Cp \ge \sqrt{(Ts)}$	P/Ps.Ms)		Kp =	
=	17.21 m/s				153.5 av. Δp at sample plane
				Cp =	1.00 pitot tube coefficient
Stack gas	volume at samp	le points			
$\mathbf{Q} = \mathbf{V}$	x A x 60			A =	0.64 area of stack m^2
=	657.1 m ³ /min				
Vwstd = 0	f water vapour o .00124 x Vlc 0.0229 m ³	collected, s	tandard conditio		19 ml
Volume of	f gas metered, st	andard co	nditions (m ³)		
$Vmstd = \underline{2}$. <u>695 x Vm x (Pa</u>	+ (ΔH/102	<u>)) x Yd</u>		18 °C
	(T +	Tm)		Vm =	0.5801 m ³
	_			Pa =	100.1 kPa
=	0.5068 m^3			$\Delta H =$	$26.5 \text{ mm H}_2\text{O}$
				Yd =	0.940

Moisture content

Bwo = Vwstd/(Vwstd + Vmstd)= 0.0433

5.3 - Calculations Sample Run No. 1 Cont.

Dry total flow of stack gas, standard conditions (m³/min)

$Qstd = \underline{Q \times Ps(2.695)(1 - Bwo)}$	Ts =	61.8 °C
Ts +273	Ps =	100.1 kPa
= 507 m ³ /min		

Percent isokinetic

$$\%I = (6.184x10^{5})(Ts + 273) \times Vmstd$$

$$Ps \times V \times Aa \times t \times (1-Bwo)$$

$$= 101.3 \%$$
Aa = 19.6 area of nozzle mm²

Filter & rinsing weights sample no. 1

weight gain on filters =	2.65 mg
weight of acetone wash =	0.02 mg
total weight gain (M) =	2.67 mg

Particulate concentration (mg/m³)

C = M	I/Vmstd	M =	2.67 mg
=	5.27 mg/m^3		

Particulate emission rate (kg/hr)

E = (C x Qstd x 60)/1000000= 0.16 kg/hr

5.3 - Calculations Sample Run No. 2

On-si	te measurements					
O2	<i>z</i> = 18.6 %	CO2 =	1.3 %	N2 =	80.1 %	
Bws	s = 0.04	$P_S =$	100.1 kF	Pa $Ts =$	335.0 K	
	l = Molecular weigl = (0.44 x %CO2)= 28.95 g/g mo	+ (0.32 x %O	(U U	· · · · · · · · · · · · · · · · · · ·		
Ms	= Molecular weig= 28.48 g/g mo	-	(g/g mole))		
Stack	gas velocity at sai	nple points				
	$V = Kp \times Cp \times \sqrt{Ts}$			Kp =	4.07	
	= 17.32 m/s			$\Delta \mathbf{P} =$	155.0 av. Δp at sample plan	ıe
				Cp =	1.00 pitot tube coefficient	
Stack	gas volume at san	nple points				
Q	= V x A x 60			A =	0.64 area of stack m^2	
	= 661.0 m ³ /min	n				
	me of water vapou l = 0.00124 x Vlc $= 0.0237 \text{ m}^3$	r collected, s	tandard c	onditions (m ³) V1c =	19 ml	
Volur	ne of gas metered,	standard co	nditions (m ³)		
Vmstd	l = 2.695 x Vm x (l	$Pa + (\Delta H/102)$	<u>)) x Yd</u>	Tm =	18 °C	
	(T	+ Tm)		Vm =	0.5914 m^3	
				Pa =	100.1 kPa	
	$= 0.5167 \text{ m}^3$			$\Delta H =$	$27 \text{ mm H}_2\text{O}$	
				Yd =	0.940	

Moisture content

Bwo = Vwstd/(Vwstd +Vmstd) = 0.0438

5.3 - Calculations Sample Run No. 2 Cont.

Dry total flow of stack gas, standard conditions (m³/min)

$Qstd = \underline{Q \times Ps(2.695)(1 - Bwo)}$	Ts =	62.0 °C
Ts +273	Ps =	100.1 kPa
= 509.1 m ³ /min		

Percent isokinetic

$$\%I = (6.184x10^{5})(Ts + 273) \times Vmstd$$

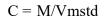
$$Ps \times V \times Aa \times t \times (1-Bwo)$$

$$= 102.8 \%$$
Aa = 19.6 area of nozzle mm²

Filter & rinsing weights sample no. 2

weight gain on filters =	3.53 mg
weight of acetone wash =	0.03 mg
total weight gain (M) =	3.56 mg

Particulate concentration (mg/m³)


C = M/	Vmstd	M =	3.56 mg
=	6.89 mg/m ³		

Particulate emission rate (kg/hr)

E = (C x Qstd x 60)/1000000= 0.21 kg/hr An overall sample blank was taken after the measurement series, following the sampling procedure in the methodology without starting the suction device and keeping the blank in the duct for 15 minutes with the sampling nozzle 1800 from the direction of flow. This leads to an estimation of the dispersion of results related to the whole procedure.

weight gain on filters =0.00002 mgweight of acetone wash =0.00001 mgtotal weight gain (M) =0.00003 mg

Particulate concentration (mg/m³)

M = 0.03 mg

= 0.06 mg/m³

5.5 - Sampling Conditions

	Sam	ple Run N	No. 1	Sam	ple Run N	No. 2
Sample	Stack	Velocity	Nozzle	Stack	Velocity	Nozzle
Position	°C	Pressure ΔP (Pa)	Area mm ²	Temp °C	Pressure ΔP (Pa)	Area mm ²
0.15D	62	152	19.6	63	155	19.6
0.85D	62	161	19.6	62	159	19.6
0.15D	62	123	19.6	62	126	19.6
0.85D	61	178	19.6	61	180	19.6

5.6 - Weighing Results

The below filters and acetone rinsings were weighed on a balance in a temperature controlled room with corrections made for differences in atmospheric pressure. Control parts and blank filters are used to confirm accuracy of weighings.

			Sample	%		
Sample		gms			time at each	weight
Run No.1.	Ref No.	Before	After Collected		point (mins)	gain
Filter	4	0.05609	0.05874	0.00265	8.0	4.8%
Acetone	A4	#########	121.10664	0.00002		0.0%
		Tota	l weight =	0.00267		
			Weight		Sample	
Sample			gms		time at each	
Run No.2.	Ref No.	Before	After	Collected	point (mins)	
Filter	5	0.05625	0.05978	0.00353	8.0	6.3%
Acetone	A5	#########	120.89938	0.00003		0.0%
		Tota	l weight =	0.00356		
			Weight		Sample	
Sample			gms		time at each	
Blank	Ref No.	Before	After	Collected	point (mins)	
Filter	6	0.05593	0.05595	0.00002	n/a	0.0%
Acetone	A6	#########	121.21765	0.00001	n/a	0.0%
		Tota	l weight =	0.00003		

6. Uncertainty calculation for EN 13284-1:2002

Sample	Run	No.	1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

						Ν	leasurement Equation	
Limit value		mg.m ⁻³	O2 Ref	21	%		$m_{f}$	
Measured conc.	5.27	mg.m ⁻³					$c = \frac{m}{V} f_c$	
	_							
Measured Quantities	Symbol	Value	Standard un	ncertain	Units	Uncertainty	% Requirement of std	l
Sampled Volume	V _m	0.5801	uV _m	0.001	m ³	0.17	<=2%	
Sampled gas Tem	T _m	291.0	uTm	2	k	0.69	<=1%	
Sampled gas Pressure	$\rho_{m}$	100.1	$u \rho_m$	0.5	kPa	0.50	<=1%	
Sampled gas Humidity	H _m	4.33	uH _m	1	% by vol	0.23	<=1%	
Oxygen content	O _{2,m}	18.6	uO _{2,m}	0.1	% by vol	0.54	<=5%	
Mass particulate	m	2.67	um	0.01	mg	0	0.04 <5% of limit va	ıl
Note - Sampled gas humic	lity, tempera	ture and pi	essure are va	lues at th	e gas mete	r		
Leak	L	0.49			%	0.49	<=2%	
Uncollected Mass	UCM	0.03			mg	1.12	<=10%	
(Instack filter - no rinse)								

Intermediate calculations	

Factor for std conds	fs	0.87		
uncertainty components	symbol	sensitivity coeff	u (in units of fs)	
	$ ho_m$	0.009	0.004	(100 H) 272 a
	$H_m$	0.009	$0.009 \ f_s =$	$=\frac{(100-H_m)}{100}\frac{273}{T_m}\frac{\rho_m}{101.3}$
	T _m	0.003	0.006	100 1 m 101.5
	ufs		0.012	1.35
Corrected volume	V	0.51	$uV = 0.007 m^3$	$V = V_m f_s \qquad 1.36$
Factor for O2 correction	fc	1.00		
uncertainty components	symbol	sensitivity coeff	u	$f = \frac{21 - O_{2,ref}}{2}$
	$O_{2,m}$	0.42	0.042	$J_{c} = \frac{1}{21 - O_{2,m}}$
Factor for O2 Corr	ufc	1.00	0.042	1.00

Parameter	Uncertainty	Value Units	ens coeff U	Incertainty in Result	Uncertainty as %
Volume(stp)	V	$0.51 \text{ m}^3$	10.39	$0.07 \text{ mg.m}^{-3}$	1.36 %
Mass	m	2.67 mg	1.97	$0.02 \text{ mg.m}^{-3}$	0.37
Factor for O2 Correction	n fc	1.00	0.00	$0.00 \text{ mg.m}^{-3}$	0.00 %
Leak	L	$0.01 \text{ mg.m}^{-3}$	1.00	0.01 mg.m ⁻³	
Uncollected mass	UCM	0.02 mg	1.97	0.03 mg.m ⁻³	
Combined uncertainty				<b>0.08</b> mg.m ⁻³	

Expanded uncertainty expressed with a level of confidence of 95%

3.16 %

Expanded uncertainty expressed with a level of confidence of 95%

0.17 mg.m⁻³

## 6. Uncertainty calculation for EN 13284-1:2002

Sample Run No. 2

						М	easurement Equation
Limit value		mg.m ⁻³	O2 Ref	21 %	%		$c^{m}$
Measured conc.	6.89	mg.m ⁻³				$c = \frac{m}{V} f_c$	
		<b>X7</b> 1	<u><u> </u></u>	. • . T	T •4	TT 4 • 4 0	
Measured Quantities	Symbol	Value	Standard u			Uncertainty %	% Requirement of std
Sampled Volume	Vm	0.5914	$uV_m$	0.001 m	n³	0.17	<=2%
Sampled gas Tem	T _m	291.0	uTm	2 k	C C	0.69	<=1%
Sampled gas Pressure	$\rho_{m}$	100.1	$u\rho_m$	0.5 k	ĸPa	0.50	<=1%
Sampled gas Humidity	H _m	4.38	uH _m	1 9	% by vol	0.23	<=1%
Oxygen content	O _{2,m}	18.6	uO _{2,m}	0.1 %	% by vol	0.54	<=5%
Mass particulate	m		um	0.01 m	ng	0	0.04 <5% of limit val
Note - Sampled gas humidity, temperature and pressure are values at the gas meter							
Leak	L	0.39		0	%	0.39	<=2%
Uncollected Mass	UCM	0.03		n	ng	0.84	<=10%
(Instack filter - no rinse)							

Factor for std conds	$\mathbf{fs}$	0.87				
uncertainty components	symbol	sensitivity coeff		u (in units of fs)		
	$\rho_{m}$	0.009		0.004	(100 <i>II</i> )	272
	$H_{m}$	0.009		$0.009  f_s =$	$=\frac{(100-H_m)}{100}$	$\frac{273}{T_m}\frac{\rho}{10}$
	T _m	0.003		0.006	100	<i>I</i> _m 10
	ufs			0.012		1.35
Corrected volume	V	0.52	uV	$0.007 \text{ m}^3$	$V = V_m f_s$	1.36
Factor for O2 correction	fc	1.00				
uncertainty components	symbol	sensitivity coeff		u	$f = \frac{21}{21}$	$O_{2,ref}$
	$O_{2,m}$	0.42		0.042	$J_{c} = \frac{1}{21}$	$O_{2,m}$
Factor for O2 Corr	ufc	1.00		0.042		1.00

Parameter	Uncertainty	Value Units	ens coeff U	<b>Incertainty in Resul</b>	Uncertainty as %
Volume(stp)	V	$0.52 \text{ m}^3$	13.33	$0.09 \text{ mg.m}^{-3}$	1.36 %
Mass	m	3.56 mg	1.94	$0.02 \text{ mg.m}^{-3}$	0.28
Factor for O2 Correction	n fc	1.00	0.00	$0.00 \text{ mg.m}^{-3}$	0.00 %
Leak	L	$0.02 \text{ mg.m}^{-3}$	1.00	$0.02 \text{ mg.m}^{-3}$	
Uncollected mass	UCM	0.00 mg	1.94	0.00 mg.m ⁻³	
Combined uncertainty				<b>0.10</b> mg.m ⁻³	

Expanded uncertainty expressed with a level of confidence of 95%

2.82 %

Expanded uncertainty expressed with a level of confidence of 95%

0.19 mg.m⁻³