HE 22 / 5531

LA-PPC/EPR Compliance Monitoring of the Hertz Firematic 499 kW Unit

for

Ranheat Engineering Limited 62 St James Mill Road Northampton NN5 5JP

at

Loft Room Staircases Company Limited
Norwood House
Temple Bank
Harlow
Essex
CM20 2DY

Study Period; - 26th January 2022

ISSUE STATUS		HE 22 / 5531	
ISSUE	01	CHECKED: S J LATHAM	APPROVED: T GROWCOTT
ISSUED		31.01.2022	

SECTION	CONTENTS
1.1	INTRODUCTION
1.2	SUMMARY
2	SAMPLING AND MONITORING STRATEGIES
2.1	SAMPLING STRATEGY
2.2	SAMPLING EQUIPMENT
2.2.1	BS 13284-1 TOTAL PARTICULATE MATTER DETERMINATION
2.2.2	BS EN 12619 VOC CONTENT DETERMINATION
2.2.3	BS 13649 ALDEHYDE CONTENT DETERMINATION
2.2.4	MDHS METHOD 56/2 HYDROGEN CYANIDE CONTENT DETERMINATION
2.2.5	GAS COMPONENT DETERMINATIONS
2.2.6	BS 1911-1 CHLORIDES (As HCI)
2.2.7	SAMPLING PROTOCOLS
2.2.8	INITIAL STACK PROFILE
2.2.9	CLIMACTIC CONDITIONS
2.2.10	QA - QC PROCEDURES
2.2.11	ACCURACY AND METHOD UNCERTAINTY
3	ANALYTICAL PROCEDURES
4	MEAN EFFLUX VELOCITY DATA
5	ANALYTICAL RESULTS
6	VISUAL AND OLFACTORY ASSESSMENT
APPENDIX 1	UNCERTAINTY MEASUREMENTS
APPENDIX 2	CALIBRATION FILE
APPENDIX 3	STACK MONITORING POINT DIAGRAM
APPENDIX 4	STATEMENT OF COMPETENCY
APPENDIX 5	STA CERTIFICATE

RANHEAT ENGINEERING LIMITED 62 ST JAMES MILL ROAD NORTHAMPTON NN5 5JP

31st January 2022

FAO: Nikki Whittle - Office Manager

REPORT REF: - HE 22 / 5531

LA-PPC/EPR COMPLIANCE MONITORING OF THE HERTZ FIREMATIC 499 kW UNIT RELEASES: LOFT ROOM STAIRCASES COMPANY LIMITED

1.1 INTRODUCTION

The report relates to monitoring studies undertaken on 26th January 2022 by Mr T Growcott, B.Sc. (Hons) MRSC C.Sci. C.Chem MIMF, of Halcyon Environmental in respect of the determination of Process Guidance Note 1/12 (2013) defined process related analytes.

The author was formally trained in Source Testing via CA Engineering, the Societe General de Surveillance International (SGS) and BASF. In addition the author has attended courses in specific determination studies including accredited analytical regimes and is STA registered (MM 03/314).

Halcyon Environmental is a member of the Source Testing Association.

In this study the Hertz Firematic 499 kW unit was fully operational.

At the time of this study, the plant's monitoring portal was located on the exit side of the discharge fan in the main stack as per the provisions of BS 13284-1.

Monitoring was undertaken in accordance with the following Source Testing Association (STA) Codes of Practise.

M 1054	STA Minimum Standards Of Testing And Reporting
M 1055	STA Code Of Practice
TGN 012	Guidance And Principles And Application Of Gas Analysis By Instrumental Methods
TGN 013	Guidance On Calibration Of Gas Analysis

QGN 004	Isokinetic Sampling Equipment
HSTGH 001	Hazards, Risk And Risk Control In Stack Testing Operations
QGN 005	Guidance On Calibration Of Sample Train Control Units
QGN 003	Recommendation Of The Minimum Number Of Samples For Analysis
QGN 001	Guidance On Assessing The Measurement Of Uncertainty In Stack Emission Monitoring.

The unit was operating under the following conditions:

Parameter	Determined Data
Flue Gas	119 - 123°C
Flow Temp	86oC
Stoker Temp	9°C
Chamber Temp	587°C

1.2 SUMMARY

The following results were determined; -

Analyte	Test 1	Test 2	Mean	PG 1/12 (2013) Maximum Limit.
Carbon Monoxide CO (mg/m³)	See following	results sheet	84	250
TPM (mg/m³)	See following	results sheet	53.385	60
VOC as C (mg/m ³)	See following	results sheet	1.034	20
Oxygen (%)	See following results sheet		9.28	-
Water Vapour (%)	See following results sheet		0.622	-
NO _x (as NO ₂) (mg/m ³)	See following results sheet		159	400
Formaldehyde (mg/m³)	See following results sheet		0.338	5
Hydrogen Cyanide (mg/m³)	See following results sheet		< 0.2	5
Chlorides (as HCl) (mg/m³)	See following results sheet		< 0.5	100

*** N.B. These results are reported in accordance with the protocol defined by PG 1/12 and are expressed at standard reference conditions of 273K and 101.3 kPa, with correction for 11% oxygen content.

Release colour has been determined in accordance with LA-PPC/EPR protocol and established as less than Ringlemann Shade 0.5 throughout the study period.

Releases have been assessed and found to be free from droplets as defined within PG 1/12 note provisions.

Flow and mean velocity determinations have established data for the Ranheat unit's stack, which have confirmed compliance above specified minimum efflux velocity requirements.

A copy of this report should be sent to Local Authority within 8 weeks of receipt.

Tim Growcott B Sc (Hons) MRSC C Sci C Chem MIMF M Am Chem Soc Senior Partner

RANH 5531 LOFT ROOM STAIRCASES LAPPC 2022 REP

SECTION 2 SAMPLING AND MONITORING STRATEGIES

2 SAMPLING AND MONITORING STRATEGIES

2.1 SAMPLING STRATEGY

The main sampling and monitoring studies were completed following initial determination of the wood burner unit's stack thermal and flow profiles as detailed in BS 13284-1.

The data reported herein was compiled in accordance with the methodologies and procedures detailed in BS specifications, in addition to specific GC-MS methodologies and the use of approved Draeger tube methods and procedures.

The data reported herein was determined at the two stack portal locations, using the following instrumentation.

Mean efflux velocity data was determined using a standard Airflow Developments model PVM 100 Electronic Micromanometer used in conjunction with a Airflow Developments BS 1042 type 2A pitot system, with in line thermocouple.

This procedure was based on BS 13284-1

Calibrated flow, humidity, temperature and pressure measurement devices were also used in these procedures, using Huger-Sutronics and AGL instrumentation.

2.2 SAMPLING EQUIPMENT

Sampling was undertaken using BMS high and low flow pumps as defined in the analytical methodology procedures detailed in the next section of this report.

Samples were obtained using convention probes located in the stack. These were connected to insulated transfer lines, of less than 0.5 m. length, to minimise condensation losses.

The port sealing system was tested prior to each run, and a leak rate of less than 0.02 % was recorded.

2.2.1 TOTAL PARTICULATE MATTER DETERMINATION using BS 13284-1

The procedure employed was that detailed in BS 13284-1.

Air was extracted from the main stack isokinetically over a series of 2 x 30-minute sampling periods and via a purpose built stack-sampling train located directly in the duct portals to minimise condensation losses. The filters were retained for gravimetric measurement in post sampling analysis.

2.2.2 VOC DETERMINATION using BS EN 12619

Both direct reading and post sampling laboratory-based procedures were used to produce the data reported herein. Direct measurements were determined via a sampling train located adjacent to the main stack portals.

Direct reading measurements were made as detailed in BS EN 12619 using a Mini RAE instrument with FID calibrated for methane equivalent and corrected gas coefficients.

Indirect measurements were made using composite Activated Charcoal and Tenax adsorption tubes, used in conjunction with low flow pumps.

The tubes were then analysed in laboratory based procedures using Gas Chromatography + Mass Spectroscopy by Halcyon personnel. This analysis detailed the VOC emissions as Carbon residues.

2.2.3 ALDEHYDES DETERMINATION using US EPA METHOD BS 13649

Aldehydes, including formaldehyde, were determined using BS 13649

2.2.4 HYDROGEN CYANIDE using HSE MDHS 56/2 Analysis

Hydrogen Cyanide was determined using HSE MDHS method 56/2 for analysis.

2.2.5 GAS COMPONENT DETERMINATIONS

The gaseous components of the emission stream were also determined.

Analyses were undertaken for NO_x, CO, CO₂ and Oxygen using dedicated Anton Sprint Pro Gas Analysers.

The instruments had their own probe systems and operated by direct measurement of the stack emissions. These measurements were made via a number of on site analyses within the instruments using comparative assessments against pre conditioned calibrated internal standards.

The instruments had their own gas conditioning systems and pre calibrated internal measurement standards. These instruments were used for direct reading of the transfer duct emissions.

Water (moisture) content was determined in accordance with EN 14790:2005 using Halcyon Test Box equipment.

2.2.6 CHLORIDE DETERMINATION

Total Chloride was determined in accordance with the latest standard method of determination, BS EN 1911-3. This methodology was supplied from the Source Testing Association as the most accurate procedure for the determination of HCl. The method provides procedures for isokinetic sampling, the suggest methodology when particulate matter is anticipated in the emission stream.

The procedure was adhered to in strict accordance with defined methodology other than in the use of a full heated sampling line due to space limitations. The sampling head was determined to be at temperatures in excess of 60 degrees C at the sampling tip, and in excess of 60 degrees C at the filter body. Simultaneous temperature measurements determined that the emission stream temp was in excess of 60 degrees C at the bubbler bottle and not less than 40 degrees C at both sampling pumps.

Chloride analyses were undertaken using the ion exchange chromatography procedure detailed in BS EN 1911-3.

This procedure was considered to give identical results to the alternative mercuric thiocyanate methodology, and not have the significant interferences of the silver nitrate potentiometric methodology.

The ion exchange method is the only one of the three options, which also gives indicative distinction of the presence of volatile chlorides, which may be present in the sampling solutions.

Chloride determination was calculated using BS EN 1911 section 4.5 equations.

2.2.7 SAMPLING PROTOCOLS

All sampling and monitoring procedures were based on basic isokinetic sampling strategies, to assess process uniformity, with continuous on line assessment of flow rate and dynamic velocity measurements during unit operation.

All flow rate and velocity measurement instrumentation was calibrated prior to sampling.

All sampling planes and points of determination were corrected in accordance with isokinetic correction Ka coefficients as detailed in Source Testing Association protocols.

Calculation of Velocity of Flow:

The basic formula for calculating velocity of flow from velocity pressure is:

Velocity Pressure (Pv) = $\frac{1}{2}$ p V²

Where:

Pv is Velocity Pressure in pascals.

p is the density of dry air (free of CO₂) at 1013mb, 273K in Kg/m³.

V is velocity in metres per second.

Dry air contains 78.1% Nitrogen (as N_2), 20.9% Oxygen (as O_2), 0.9% Argon (as Ar) and traces of O_2 (0.03%), Ne, He, Kr, Xe, O_2 , O_3 , O_4 , O_2 , O_4 , O_5 , O_6 , O_7 , O_8 , O_8 , O_8 , O_8 , O_9 ,

Atomic Weight of Nitrogen is 14, Oxygen is 16, and Argon is 40. Molecular Weight if Nitrogen (N_2) is 28, Oxygen (O_2) is 32 and Argon (Ar) is 40.

Molar Density of a complex gas mixture, such as air, can be calculated using the proportions of gas present, and the molecular weights of the component gases. Thus using the 3 principal components of dry air:

Molar gas density =
$$0.781 \times 28 \text{ (for } N_2) + 0.209 \times 32 \text{ (for } O_2) + 0.009 \times 40 \text{ (for Ar)}$$

= 28.916

When the figures are made more accurate, and all the other trace gases added into the equation, **Molar Gas Density of Air** works out to be **28.9644**. This is normally approximated to 29.

The following calculations can be utilised (in most cases), where molar gas density is in the range of 28-30, (see note on determination of flue gas density).

In some combustion stacks the density can be found to be outside this range, in which case the calculations need to be modified by substituting the actual value into the basic equation, and following the calculation through.

One mole of gas occupies 22.4136 litres at 273 K, 1013mb. (Normally approximated to 22.4). One mole of air occupies the same volume and weighs 28.9644 g. Thus the **Density of Dry Air** at 273 K, 1013 mb works out at 1.292 Kg /m³. The precise figure is 1.2928 Kg/m³.

If this figure is entered into the initial equation

$$Pv = \frac{1}{2} p V^2$$

It calculates out to:-

Velocity (metres per second) = $1.244 \, \sqrt{\text{Pv}}$ (at 273 K, 1013 mb) or Velocity (metres per second) = $1.280 \, \sqrt{\text{Pv}}$ (at ambient: 289 K, 1013mb)

This equation can be applied at or near standard conditions. Where conditions vary significantly from standard, corrections can be made according to the following formula:

$$V = 1.280 \sqrt{\frac{1013 \times T \times 101300}{Pa \times 289 \times (101300 + Ps)}} \times PV$$

This equation corrects for atmospheric pressure (Pa), expressed in millibars, Temperature expressed in Kelvin (T), and static pressure in the stack (Ps) in pascals. It multiplies out to give:

$$V = 762.7 \sqrt{\frac{T \times PV}{Pa (101300+Ps)}} \times PV$$

Where:

V	=	Velocity of Flow on metres per second	(ms ⁻¹)
Τ	=	Temperature in Kelvin (Kelvin = ° Celsius + 273)	(K)
Pv	=	Velocity Pressure in pascals	(Pa)
Ps	=	Static Pressure in pascals	(Pa)
Pa	=	Atmospheric Pressure in millibars (1 millibars = 100 pascals)	(mb)

To apply this equation, Pv should be entered as the root mean square of all velocity pressure readings. Where the majority of the readings do not vary by more than 25% from the mean figure, the mean provides a satisfactory answer.

The equation gives velocity of flow at temperature T, static pressure Ps, and atmospheric pressure Pa.

Measurement of Air Flow in Stacks:

Correct isokinetic sampling is dependent on accurate assessment of air velocity in the duct or flue. Because of the potentially hot, acid conditions found in flues, the instrument of choice for measuring flow is one that measures differential pressure, and does not insert an instrument with electronic or moving parts into the duct.

There are several other types of instrument available for measuring airflow, but these should not, as a general rule, be used in flue stacks.

Pressure in Ducts:

There are 4 factors that affect the perceived pressure in a duct:

- 1. Movement of air produces a measurable Velocity Pressure (also known as Dynamic Pressure).
- 2. Static Pressure, is exerted in all directions, by the compression, expansion, or heating process that is moving the air.
- 3. Atmospheric (Barometric) Pressure
- 4. Temperature.

Micro manometer & Pitot Tube:

The pitot tube is the differential pressure probe, it is designed to create minimal turbulence in the flow. The British Standard design has an ellipsoidal nose, which is inserted to face the flow. The tube is highly directional and needs to be accurately aligned into the flow, to produce the best result.

Unfortunately the pressure bearing on the nose of the instrument is Velocity Pressure, but with the addition of Static Pressure.

To eliminate this problem, the pitot tube is made with a separate tapping to measure Static Pressure alone. The BS tube is made double, with tappings at right angles to the flow, whereas the American S type pitot consists of two separate tubes 180° opposed.

The two types of pitot tube have different response factors (sometimes called the K factor), and this may require the use of a correction factor in calculating flow.

The response factor for the BS type is 1.0 and for the S type is 0.85.

The original instrument for measuring air pressure is the U tube manometer. By attaching the two tappings of the pitot tube, one to each side of the manometer, Static pressure is applied to both sides, and its effect is eliminated, allowing a direct reading of Velocity pressure. The inclined manometer is an improvement on the U tube, because it allows for more accurate readings of pressure. However it does require careful leveling before use, and an electronic micro manometer is more user friendly. With either type of instrument it is important that it is connected up with the Velocity Pressure tapping bearing on the positive side of the instrument.

Calculating & Presentation of Results (Measurements & Corrections):

Particulate sampling is always assessed gravimetrically (by weight). Filter material of all types is pre weighed, exposed in the sampling line and re-weighed.

This procedure may require drying of the filter medium before re-weighing, if the sampling was conducted at a temperature below the dew point. In all circumstances, filters require careful handling to avoid loss particulate, and also loss of original fibrous material. Weight of particulate collected is thus derived from the difference of the two weights and is normally expressed in milligrams (g^{-3}) or micrograms (g^{-6}).

The balance should be calibrated against a traceable standard before and after each batch of filters is weighed / re-weighed.

Volume of gas collected is normally determined either by multiplying sampling flow rate (litres/minute) by time elapsed (minutes) to get a final volume in litres, or by utilising a direct reading from a gas meter.

In both cases, volume calculated is at ambient temperature and pressure and requires correcting to standard conditions. The gas meter or flow meter should be regularly re-calibrated against a traceable standard, and this may impose an extra calibration factor on the results to obtain correct ambient volume.

If the sampling line, does not include a silica gel trap, but only a condensate trap, (as in the BCURA or CEGB Mk111A) the air passing to the meters can be assumed to be water saturated at ambient conditions, and this too required compensation.

Schedule A & B processes require presentation of results in milligrams per cubic metre, and / or parts per million, as standardised to the following conditions:

Temperature 273K (0° Celsius)
Barometric Pressure 101.3KPa, (1013mb)
Humidity Dry
Oxygen 3%, 6%, 8%, 11%, 15%, 18%
depending on combustion process

The various calculations and conversions are explained in the subsequent paragraphs.

Determination of Isokinetic Sampling Rate:

To obtain correct samples of particulates, turbulence caused by sampling must be minimised. This is achieved by making the velocity of flow into the sampling probe equal to the velocity flow moving along the duct or stack.

This sampling technique is called isokinetic sampling, and its use enables the collection of representative samples, by eliminating the distortion of sample reliability caused by variation in proportion of light particulates collected.

Velocity of flow is determined by the use of pitot tube and micro manometer. This is normally calculated at the stack temperature. The gas volume measuring equipment is normally functioning at about ambient temperature. (Gas moving along the sampling line rapidly cools to ambient)

To calculate isokinetic flow rate, first the gas velocity must be calculated as at ambient. This is done using the standard gas equation. (See Calculation of Results).

<u>Pressure x Volume</u> = Constant Temperature

Thus for a stack of uniform width volume is proportional to velocity, hence:

 $Velocity \text{ } \underline{\text{ambient}} = \underline{\text{pressure } \underline{\text{stack } x \ Velocity } \underline{\text{stack } x \ \text{Temperature } \underline{\text{ambient}}}}$ $\underline{\text{Temperature } \underline{\text{stack } x \ \text{Pressure } \underline{\text{ambient}}}}$

As atmospheric pressure remains equal this item cancels out of the equation.

Sampling rate (litres per minute) is a function of stack velocity (metres per second) and probe tip area (square centimetres), derived from pr². The rationale is as below:

Metres per second (m/s) x
$$\frac{100}{60}$$
 = centimetres per minute (cm/min)

Centimetres per minute (cm/min) x Square centimetres (cm²) = Cubic Centimetres per minute (cm³/min)

Thus:

Determination of Flue Gas Density:

Stack gas density is determined by measuring the concentration of Carbon Dioxide, Carbon Monoxide and Oxygen in the stack. This can be done using a combustion analyser.

The residual dry atmospheric gas is assumed for the purpose of this calculation to be Nitrogen. Nitrogen concentration is calculated as follows:

$$\% N_2 = 100 - (\% CO_2 + \% O_2 + \% CO)$$

The proportion if each gas in the dry mixture can then be utilised to calculate the dry molar gas density as shown previously:

Molar Dry Gas Density (Dd) =
$$(\%CO_2 \times 44) + (\% O_2 \times 32) + (\%CO + \%N_2 \times 28)$$

100 100 100

Flue gases however also contain water. The water is condensed out of the sampling line, (to protect the sampling pump), and is weighted.

The volume of gas occupied by the collected condensate water can be calculated from the volume occupied by 1 mole of standard gas (ie. 22.4 litres at 273K, 1013mb).

Gas Phase Volume of Water (litres) = Weight of Water (grams)
$$\times \frac{22.4}{28}$$

Dry gas volume of the sample is measured by the gas meter in the sampling line. Total gas volume (wet) collected is therefore the sum of the calculated water volume above and the dry gas volume measured.

Total (Wet) Gas Volume = Dry Gas Volume + Gas phase Water Volume

Using the above relationship, the proportion of dry gas in the total volume collected, (Mole Faction of Dry Gas), can be calculated as follows:

Mole Fraction of dry gas (Md) = <u>Dry gas volume</u> Total gas volume

Mole fraction of wet gas can be calculated similarly, or as

Mole fraction of wet gas (Mw) = 1 - Mole fraction of dry gas (Md)

Density of stack gas can then be calculated from the density of dry stack gas calculated above, and the Mole Fractions calculated.

Thus:

Molar Density of dry gas (Dd) x Mole fraction of dry gas (Md) + 18 (1 - Md) = Molar Stack gas density (Ds)

This latter equation is identical in methodology to the earlier equation for deriving molar gas density of dry gas, but now includes an extra derived function for water

Molar stack gas density (Ds) = Md
$$\frac{(\%CO2 \times 46)}{100} + \frac{\%O2 \times 32}{100} + \frac{\%N2 + \%CO \times 28}{100} + Mw \frac{(\%H2O \times 18)}{100}$$

In most cases the Molar stack gas density will work out as 29 ± 1 . In this case, the normal equation for stack flow will prove to be satisfactory.

Calculation of Volume Flow:

Volume flow is calculated from flow velocity and internal area of the stack or duct as follows:

Volume flow (m³ min⁻¹) = Velocity (ms⁻¹) x Internal Area of Duct (m²) x 60

Internal area of duct is calculated as:

pr² for a circular duct, or base x height for a square duct.

To convert m³min⁻¹ to cubic feet per minute (cfm) multiply by 35.315.

Oxygen Correction:

The principal behind the oxygen correction is that a complete combustion process would consume all the oxygen, releasing only Carbon dioxide and Water. Thus the more efficient the combustion process, the less Oxygen is released.

Many processes however function less efficiently than they should, and many others are designed to operate with a large excess of air, or additions of cool air to facilitate the erection of less heat resistant stacks.

The oxygen correction is designed to recalculate the concentration of pollutant gases found, assuming that the process if functioning at a reasonable efficiency for its type.

Thus Gas & Oil fired combustion plant are corrected to 3% O₂, Coal fired combustion plant at 6% O₂, Clinical Waste Incinerators at 11% O₂, and Gas Turbines at 15% O₂. Other processes may be standardised to other Oxygen concentrations.

Oxygen makes up about 20.9% of normal air; this is used in the correction factor, which is as follows:

Corrected Pollutant Concentration (mg/m³) = $(20.9 - Standard O_2\%)$ x Measured Concⁿ (20.9 - Measured O₂%)

This means that where a combustion process is running more efficiently than required, the correction factor will effectively decrease the final corrected concentration of pollutant. Conversely, where the process is inefficient, the Oxygen correction can dramatically increase the final result.

The correction is only used in combustion processes, and is applied identically to all pollutant gases and particles.

Conversion Factors (mg/m³ and ppm):

Final results of particulate concentrations in air are always presented as a weight by volume measure (e.g. milligrams per cubic metre).

Gases can be presented as a weight by volume, or as a volume measure (parts per million). Unfortunately, there is no standard methodology within the Process Guidance notes and both types of measure are used, often in the same note. It is thus, important to be able to change between the two methods of calculating gas concentration.

Hydrogen chloride will be used to illustrate the two methods as follows:

Hydrogen chloride has molecular weight of 36.5. 1 mole of HCl occupies 22.4 litres at s.t.p. 1 millimole of HCl occupies 22.4 millilitres at s.t.p. 1 millimole weighs 36.5 milligrams.

If 1 millimole of HCl is dispersed in 1 cubic metre of air then this is a concentration of 36.5 milligrams per cubic metre (mg/m³) or 22.4 millimetres per cubic metre (parts per million) ppm.

So for HCl 36.5 mg/m 3 = 22.4 ppm

Specifically for HCl ppm x $\underline{36.5} = \text{mg/m}^3$ $\underline{22.4}$

In general ppm x $\frac{\text{molecular weight}}{22.4} = \text{mg/m}^3$ at standard conditions (273 K, 1013mb)

The concept of parts per million is particularly useful, because gas volumes expand and contract with temperature and pressure. Because all gases occupy the same volume, ppm does not change with temperature.

Thus a gas concentration recorded in ppm at high temperature, is still the same at low temperature, and at standard conditions, allowing a direct conversion to mg/m³ without the worry of changing volumes

In the case of Nitric Oxide (NO) and Nitrogen Dioxide (NO₂), NO exists at high temperature, as a breakdown product of NO₂. When combined emissions are released to atmosphere, the NO cools and re-oxidises to form NO₂.

Thus the PG notes required presentation of Nitrogen oxides (NOx) to be combined and expressed as NO₂.

Because both gases occupy the same volume the ppm concentrations can be directly added such that:

ppm NO + ppm NO₂ = ppm NOx (as
$$NO_2$$
)

The combined NOx concentration as NO_2 can then be calculated as above using the molecular weight of NO_2 as the basis for the calculation.

Occasionally (for example in Occupational Hygiene applications), the conversion equation is presented as:

$$mg/m^3 = ppm \times \frac{molecular\ weight}{24}$$

This allows for the fact that 1 mole of gas at 20°C, 1013 mb, occupies 24 litres, and is correct for use at ambient conditions. It is not correct to use this equation at standard conditions.

Temperature and Pressure:

Assuming that stack gases obey the standard Gas Laws, then:

<u>Atmospheric Pressure (mb)</u> x <u>Volume (m³)</u> = Molar Gas Content Temperature (K)

or

$$\frac{PV}{T} = K$$

The Molar Gas Constant equals 8.3143 J K-1 mol-1

A more useful expression of the Gas Law is:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

This can be expressed to find an unknown as:-

$$V1 = \underbrace{P_2V_2}_{T_2} \times \underbrace{T_1}_{P_1}$$

The correction equation can therefore be expressed as:

Standardised Volume = Recorded Pressure x Std Temperature (273) x Recorded Volume Std Pressure (1013) Recorded Temperature

For this correction to work, any unit of pressure can be utilised (inches of water, millimetres of mercury, millibars, kilopascals etc.) provided that the standard atmosphere is expressed in similar units.

Temperature must however be worked in Absolute Units e.g. Kelvin ($K = {}^{\circ}C + 273.15$) or Rankine (${}^{\circ}R = {}^{\circ}F + 459.67$)

2.2.8 INITIAL STACK PROFILE STUDY

As per the provisions of BS 13284-1 a stack profile study was addressed prior to monitoring and sampling.

This study was undertaken at 17 points in two trans-axial assessments at the sampling portal locations. Both temperature and velocity profiles were measured.

(Pre-test measurements determined that the sampling head was less than 10 % of the total stack cross sectional area as detailed in BS 13284-1).

2.2.9 CLIMACTIC CONDITIONS

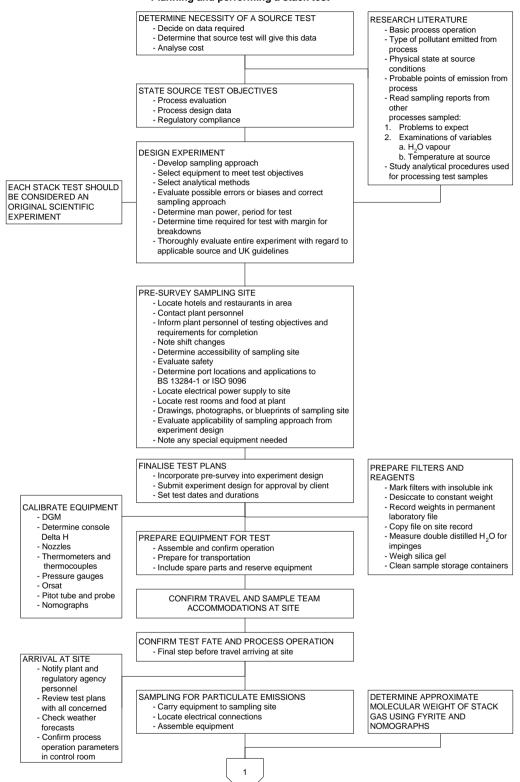
The following climactic conditions were noted during the study; -

Ambient Temp K	279
Atmospheric Pressure kPas	101.2
Relative Humidity %	74
Wind Speed k.p.h.	< 5
Wind Direction	SW
Visibility metres	> 1000
Weather	Bright and clear, no precipitation

2.2.10 QA-QC PROCEDURES

Halcyon operates QA - QC procedures following the guidelines of the Source Testing Association (STA).

2.2.11 UNCERTAINTY MEASUREMENTS


Halcyon operates the measurement of uncertainty in accordance with; -

"Guidance on Assessing Uncertainty in Stack Emission Monitoring"
Dr.J.Pullen
STA Quality Task Group

Planning and performing a stack test

PRELIMINARY GAS VELOCITY TRAVERSE

- Attach thermocouple or thermometer to pitot probe assembly
- Calculate sample points from guidelines outlined BS 13284-1 or ISO 9096:2017
- Mark pitot probe
- Traverse duct for velocity profileRecord Delta p's and temperature

RECORD ALL IFORMATION ON DATA SHEETS

- Sample case number
- Meter console number
- Probe length Barometer pressure Nozzle diameter
- C factor
- Assumed H₂O Team supervisor
- Observers present
- Train leak test rate - General comments
- Initial DGM dial readings

- Record duct static pressure

- USE NOMOGRAPH OR CALCULATOR TO SIZE NOZZLE AND DETERMINE C FACTOR - Adjust for molecular weight and pitot tube C
 - See K pitot point on monogrpah

LEAK TEST COMPLETELY ASSEMBLED SAMPLING TRAIN @ 15" Hg VACUUM AND MAXIMUM LEAK RATE OF 0.02 CFM

NOTIFY ALL CONCERNED THAT TEST IS ABOUT TO

CONFIRM PROCESS OPERATING PARAMETERS

TAKE INTEGRATED SAMPLE OF STACK GAS FOR ORSAT ANALYSIS (OR PERFORM MULTIPLE FYRITE READINGS ACRESS DUCT)

ANALYSE STACK GAS FOR CONSTITUENT GASES

- Determine molecular weight - CO2 and O2
- concentration for F-factor calculation

START SOURCE TEST

- Record start time
- Record gas velocity
- Determine Delta H desired from nomograph
 Start pump and set orifice meter differential
- manomoeter to desired Delta H
- Record
- Sample point
 Time from zero
- 3. DGM dial reading
- 4. Desired Delta H 5. Actual Delta H
- 6. All temperatures DGM, stack sample case
- Maintain isokinetic Delta H at all times
- Repeat for all points on traverse

MONITOR PROCESS RATE

APPROXIMATE H₂O VAPOUR CONTENT OF STACK GAS

TAKE MATERIAL SAMPLES IF NECESSARY

TAKE CONTROL ROOM DATA

RECORD CLIMATICS

RECORD TEST PERSONNEL

AT CONCLUSION OF TEST RECORD

- Stop time 24 hour clock
- Final DGM
- Any pertinent observations on sample

PREPARE OTHER TRAINS FOR REMAINING SAMPLING

LEAK TEST SAMPLE TRAIN

- Test at highest vacuum (in Hg) achieved during test
- Leak rate should not exceed 0.02 CFM
- Note locations of any leak if pssible

REPACK EQUIPMENT AFTER SAMPLING IS COMPLETED

REPEAT PRECEDING STEPS FOR THREE PARTICULATE SAMPLES

SAMPLE CLEAN-UP AND RECOVERY

- Clean samples in laboratory or other clean area removed from site and protected from the outdoors
- Note sample conditions
- Store samples in quality assurance containers
- Mark and label all samples
- Pack carefully for shipping if analysis is not done on site

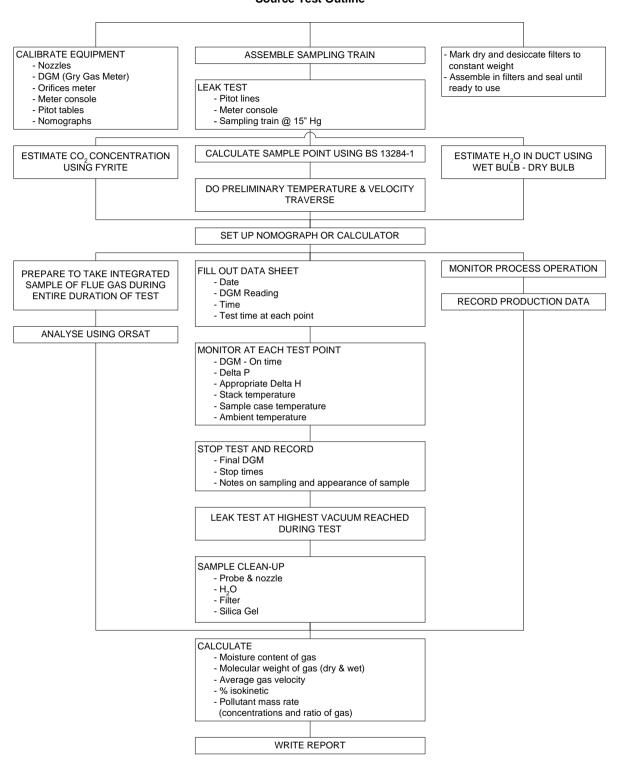
ANALYSE SAMPLES

- Follow BS 13284-1, ISO 9096:2017 A1, A2, M1, M2 guidelines
- Document procedures and any variations employed
- Prepare analytical Report Data

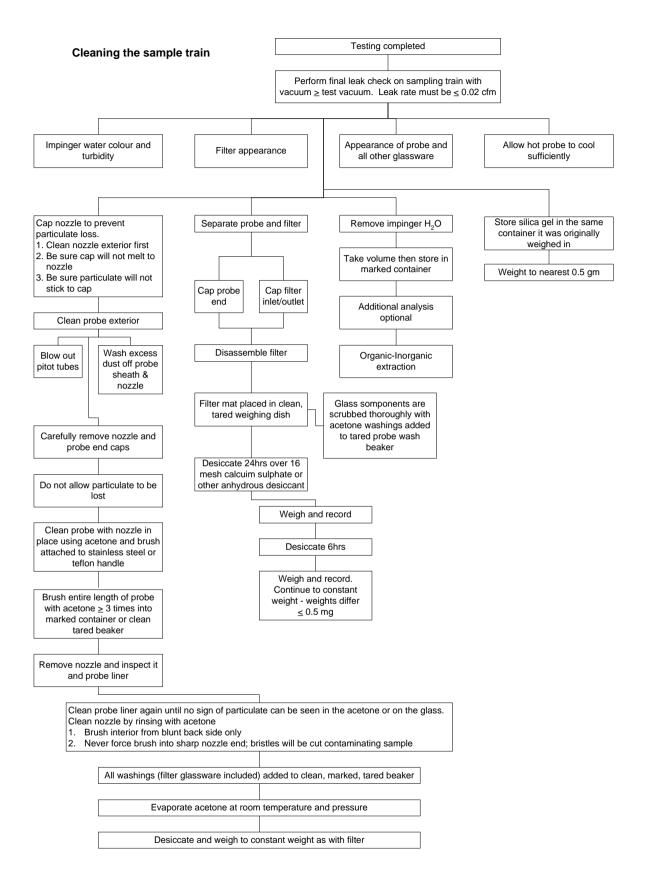
CALCULATE

- Moisture content of stack gas
- Molecular weight of gas
- Volume sampled at standard conditions
- Concentration / standard volume
- Control device efficiency
- Volumetric flow rate of stack gas
- Calculate pollutant mass rate

WRITE REPORT


- Prepare as possible legal document
- Summarise results
- Illustrate calculations
- Give calculated results
- Include all raw data (process & test)
- Attach descriptions of testing and analytical methods
- Signature of analytical and test personnel

SEND REPORT WITHIN MAXIMUM TIME TO INTERESTED PARTIES



Source Test Outline

SECTION 3 ANALYTICAL PROCEDURES

Substances and their standard methods

Substance/Parameter	Standard or Method
Aldehydes	BS 13649
Carbon Dioxide	ISO 15058
Carbon Monoxide	ISO 12039
Hydrogen Cyanide	MDHS 56/2 for analysis / BS13649
Moisture	BS14790
Nitrogen Oxides	ISO 10849
Oxygen	ISO 12039
Particulate	BS 13284-1
VOC (Total low range)	BS EN 12619

 $^{^{\}ast}$ Specific analytical procedures for certain speciated VOC analytes was based on + Mass Spec / GC methodologies.

SECTION 4 MEAN EFFLUX VELOCITY DATA

4 FLOW DYNAMICS RESULTS

The following results were determined using the calculations and correction coefficients detailed in Sampling Protocols.

The following results were determined at the portal locations; -

Table 4.1 Mean Efflux Velocity Results.			
Sampling Location.	Mean Velocity @ T (m/s)	Discharge Temp (K)	
Mean Value	11.95 at port > 16 at end point	399.88	

17 point trans-axial temp traverse ratio Tmax:Tmin = within method specification 17 point trans-axial velocity traverse ratio Vmax:Vmin = within method specification

The stack airflow stream temperature was measured continuously using a Casella W1720 thermoanemometer probe in the stack portals.

Mean efflux velocity is specifically determined as the initial criteria to all subsequent sampling work, this being fully dependent upon the reported value being obtained correctly. Errors included in this initial measurement may be significant if not correctly identified and eliminated from the test procedure. The errors associated within any typical test are reported in the standard Halcyon Test Report.

Sampling locations are generally defined in Technical Guidance Notes M1 and M2, as are the access portal descriptions.

When undertaking mean efflux velocity, the standard working tool in the pitot tube; descriptions of various pitots are defined in TGN M1. All pitot tubes must be in good working order, with current calibration and with use of the correct sampling nozzles for static and dynamic pressure determinations. Results are normally displayed on a suitable electronic micro-manometer. Many of these devices are equipped with basic calculation software such that once the stack dimensions have been entered and the procedure completed, the velocity, mass flow at T and at reference conditions can all be completed from pre-programmed calculation matrices. Data determined in the field can be directly transposed into standard document formats to simplify the calculation tasks.

The supporting kit equipment that is used will determine ambient and stack temperature, ambient barometric pressure, relative humidity and oxygen levels; again this information can be entered into pre-programmed calculator matrices to establish data at T and reference conditions as required by permit provisions.

The standard methods of determination are defined in the relevant ISO or BS protocol, typically BS 13284-1 of BS 13284 – 1: 2002. The test statement should be included whether the testing is supporting isokinetic sampling or not.

Essentially the pitot is used to traverse the stack during testing, normally across at least 2 sampling planes. From the initial study the tester confirms that Vmax:Vmin, Tmax:Tmin, drift angle, gas homogeneity and droplet tests are completed and met. The typical working area of the stack is usually > 5 hydraulic diameters above a bend or joint, in a straight section of the stack. The probe is inserted at the correct location and allowed to monitor for approx 2 – 3 minutes before the reading is determined.

Normally up to 16 or 17 test locations are measured within a circular stack and 4 or 8 locations in a square or rectangular stack. All locations are reported in the standard Halcyon Test Report as are any determined Uncertainty values.

Velocity measurements are obtained and then stored in the electronics and a mean value calculated. The meeting of the sampling provisions is normally deemed more relevant than the geometry of the sampling port; if the sampling plane criteria are met then a non-standard port is usually considered as secondary. As such for part A2 and B processes the use of the BS 3405 portal is still considered as acceptable.

The formula for the determination on MEV is defined within the standard Halcyon format.

Of critical importance is the safety of and Stack Tester; this being implicit within the standard sampling procedure. The stack tester's safe working is defined within STA guidance and often a compromise must be considered in full compliance with TGN M1 and the significance of the Working at Height Regulations.

TGN M1 defines the configuration of the approved stack sampling platform, and this is applied strictly to A1 permitted sites, however A2 and B permitted sites often do not have such platforms in place. It is then necessary for the tester to complete a suitable risk assessment and minimise any risks.

The current STA view is that sampling must only take place from safe locations; the use of ladders is strictly prohibited and the use of cherry pickers only considered appropriate once a safe working evaluation and full risk assessment have been completed. The STA regards the formal and documented training for Working at height as an implicit provision on any stack testers' portfolio.

Halcyon personnel normally utilise the STA Guidance documentation, Disclosure of Hazards document and Risk Assessment format as a condition of their site activities.

Pitot Measurements								
	BS 13284-1	Υ	SO 9096:2003					
	BS6069:	F	Please tick the re	elevant box				
Client:	Loft Room St	aircases Co. L	Date:	26TH January	2022			
Address:	Norwood House		Operator:	T Growcott				
_	Temple Bank		Job Number:	HE 22 / 5531				
	Harlow, Essex		Location:	Ranheat Unit				
	CM20 2DY		Instruments:	BS 1042 2A +				
Details of Duct:	Stack			Atmos. P (pa)		Atmos. Temp K		
Duct Shape:		Circular Initial:			101.2	278		
Dimension / Dia.:	-		Final:	101.6		280		
Area:		- Mean:		101.4		279		
	Axis 1:		Axis 2:	Gas Homoge	neity Check:	20 point Co test PASS		
Traverse Point	Temp C	Temp C ²	Velocity kPa	V²	10 20 33	Xi		
1	126	15876	91	8281		\\		
2	126	15876	92	8464				
3	127	16129	94	8836				
4	127	16129	96	9216				
5	127	16129	90	8100				
6	127	16129	91	8281				
7	128	16384	93	8649	O2 reference	11%		
8	128	16384	94	8836	Humidity %	74		
9	126	15876	90	8100	Ambient K	279		
10	127	16129	91	8281	Negative Pressure	Pass		
11	127	16129	93	8649	Drift Angle	Pass		
12	128	16384	94	8836	Dry Gas Correction	Y		
13	126	15876	90	8100	Pitot Correction	Y		
14	126	15876	91	8281	T Correction	Y		
15	127	16129	92	8464	Vmax : Vmin	Pass		
16	127	16129	93	8649	Tmax : Tmin	Pass		
17	127	16129	93	8649	V _{rms}	92.2502989		
Total	2157	273693	1568	144672	Pitot Calibration	1.002		
Average	126.882353	16099.58824	92.23529412	8510.117647	Static Pressure Pv (Pascals	-0.41		
RMS		126.8841528		92.2502989		000 00 14 500		
			Moisture Content %	N/A				

PHOTOGRAPH 1

PHOTOGRAPH 2

PHOTOGRAPH 3

PHOTOGRAPH 4

PHOTOGRAPH 5

PHOTOGRAPH 6

SECTION 5 ANALYTICAL RESULTS

5 ANALYTICAL SEQUENCE AND RESULTS

The monitoring strategy was undertaken over ½ a working day

An ongoing continuous assessment of emission clarity, colour and odour at the point of discharge were also undertaken.

At no time during this study was there any indication of colouration by dense black smoke.

Periodic monitoring of O₂, water vapour, CO, NO_x and VOC were undertaken.

5.1 ANALYTICAL RESULTS

Analytical mean result data is detailed below: -

Analyte	Test 1	Test 2	Mean	PG 1/12 (2013) Maximum Limit.
Carbon Monoxide CO (mg/m³)	See following	results sheet	84	250
TPM (mg/m ³)	See following results sheet		53.385	60
VOC as C (mg/m³)	See following results sheet		1.034	20
Oxygen (%)	See following results sheet		9.28	-
Water Vapour (%)	See following results sheet		0.622	-
NO _x (as NO ₂) (mg/m ³)	See following results sheet		159	400
Formaldehyde (mg/m³) See following		results sheet	0.338	5
Hydrogen Cyanide (mg/m³)			< 0.2	5
Chlorides (as HCl) (mg/m³)	See following	results sheet	< 0.5	100

*** N B

These results are reported in accordance with the protocol defined by PG 1/12 and are expressed at standard reference conditions of 273K and 101.3 kPa, with correction for 11% oxygen content.

The main VOC components determined in post sampling analyses were hydrocarbons and pyrolysis fragments as anticipated.

The TPM components determined in the duct air stream emission were composed mainly of carbonised soots.

The following tables define the sampling times and sampling rates.

Stack S1 – Volatile Organic Compounds (VOC as C)

Job Number:	HE 22 / 5531	
Client:	LOFT ROOM	
Date:	26th January 2022	
Release Point Stack Ref	S1	
Instrument Type	FID	
Calibration Gas	Propane in air	
Sample Number	5531/VOC/001/240	
Test Start (Ti)	09.30.00	
Test Finish (Tf)	10.32.00	
Test Duration (mins)	62	
% Carbon	75	
Sampling Rate Interval (secs)	15	
No. of Samples	240	
Maximum Reading (mgC/m³)	4	
Minimum Reading (mgC/m³)	1	
Mean Reading (mgC/m³)	1.034	

Stack S1 - Total Particulate Matter

Job Number:	HE 22 / 5531	
Client:	LOFT ROOM	
Date:	26th January 2022	
Release Point Stack Ref	S1	
Instrument Type	Anderson Portable	
Test Method	BS 13284-1	
Tester	T Growcott MM03/314 Duplicate Sample + Blank Pass	
STA Ref:	MM03/314	
MID Guidance		
Vmax:Vmin	Pass	
Tmax:Tmin	Pass	
-ve Pressure	Pass	
Drift Angle	<15°	
Homogeneity Check	Pass	
Droplet Test	Pass	
DGM Inlet C	61	
DGM Outlet C	61	
Sample Number	5531/TPM/001/2	
Test Start (Ti)	09.35.00	
Test Finish (Tf)	10.39.00	
Test Duration (mins)	64	
No. of Samples	2 x 30 mins	
Maximum Reading (mg/m³)	55.22	
Minimum Reading (mg/m³)	51.47	
Mean Reading (mg/m³)	53.385	

Stack S1 - Carbon Monoxide

Job Number:	HE 22 / 5531
Client:	LOFT ROOM
Date:	26th January 2022
Release Point Stack Ref	S1
Instrument Type	Anton Sprint Pro Gas Analyser
Calibration Gas	Internal
Sample Number	5531/CO/001/240
Test Start (Ti)	09.40.00
Test Finish (Tf)	10.40.00
Test Duration (mins)	60
Sampling Rate Interval (secs)	15
No. of Samples	240
Maximum Reading (mg/m³)	127
Minimum Reading (mg/m³)	61
Mean Reading (mg/m³)	84

Stack S1 – Oxides of Nitrogen (as NOx)

Job Number:	HE 22 / 5531
Client:	LOFT ROOM
Date:	26th January 2022
Release Point Stack Ref	S1
Instrument Type	Anton Sprint Pro Gas Analyser
Calibration Gas	Internal
Sample Number	5531/NOx/001/240
Test Start (Ti)	09.40.00
Test Finish (Tf)	10.40.00
Test Duration (mins)	60
Sampling Rate Interval (secs)	15
No. of Samples	240
Mean Reading (mg/m³)	159

Stack S1 - Oxygen

Job Number:	HE 22 / 5531
Client:	LOFT ROOM
Date:	26th January 2022
Release Point Stack Ref	S1
Instrument Type	Anton Sprint Pro Gas Analyser
Calibration Gas	Internal
Sample Number	5531/Ox/001/240
Test Start (Ti)	09.40.00
Test Finish (Tf)	10.40.00
Test Duration (mins)	60
Sampling Rate Interval (secs)	15
No. of Samples	240
Mean Reading (mg/m³)	9.28

Stack S1 - Moisture

Job Number:	HE 22 / 5531
Client:	LOFT ROOM
Date:	26th January 2022
Release Point Stack Ref	S1
US EPA method 4	Test Box 2
Sample Number	5531/H20/001/2
Test Start (Ti)	09.50.00
Test Finish (Tf)	10.50.00
Test Duration (mins)	60
Sampling Rate Interval (mins)	30
No. of Samples	2 x 30 mins
Mean Reading (%)	0.622

Stack S1 - Hydrogen Cyanide

Job Number:	HE 22 / 5531
Client:	LOFT ROOM
Date:	26th January 2022
Release Point Stack Ref	S1
HCN Sampling Train	Test Box 2
Sample Number	5531/HCN/001/2
Test Start (Ti)	09.35.00
Test Finish (Tf)	10.39.00
Test Duration (mins)	64
Sampling Rate Interval (mins)	30
No. of Samples	2 x 30 mins
Mean Reading (mg/m³)	< 0.2

Stack S1 - Formaldehyde

Job Number:	HE 22 / 5531
Client:	LOFT ROOM
Date:	26th January 2022
Release Point Stack Ref	S1
Formaldehyde Sampling Train	Test Box 1
Sample Number	5531/HCHO/001/2
Test Start (Ti)	09.40.00
Test Finish (Tf)	10.44.00
Test Duration (mins)	64
Sampling Rate Interval (mins)	30
No. of Samples	2 x 30 mins
Mean Reading (mg/m³)	0.338

Stack S1 - Chlorides (as HCI)

Job Number:	HE 22 / 5531
Client:	LOFT ROOM
Date:	26th January 2022
Release Point Stack Ref	S1
Chloride Sampling Train	Box 3
Sample Number	5531/HCI/001/2
Test Start (Ti)	09.45.00
Test Finish (Tf)	10.49.00
Test Duration (mins)	64
Sampling Rate Interval (mins)	30
No. of Samples	2 x 30 mins
Mean Reading (mg/m³)	< 0.5

SECTION 6 VISUAL AND OLFACTORY ASSESSMENTS

6 VISUAL AND OLFACTORY ASSESSMENTS

6.1 VISUAL ASSESSMENT

In accordance with the provisions of LA-PPC/EPR, an assessment of discharge emissions was undertaken throughout the monitoring period.

The assessment was carried out with reference to the methods and procedures detailed in BS 2742.

The process related emissions were evaluated; the emission discharge colour for the stack was determined as < Ringelmann shade 0.5.

6.2 OLFACTORY ASSESSMENT

In accordance with the provisions of LA-PPC/EPR an assessment of the Ranheat unit's emissions was undertaken at the point of discharge.

Perceptive odour evaluations were non quantitative and dependant upon the assessors, however an evaluation by subjective procedures was carried out by specialist personnel familiar with odour assessment techniques.

The unit's emissions were assessed as a low impact perceived odour, characterised by a typical neutral notes at close proximity.

APPENDIX 1 UNCERTAINTY MEASUREMENTS

Table 1: Simple error analysis for particulate measurement, 4 Point Sampling (or 10 Point Sampling when Pitot Ratios >4:1≤9:1)

Type of Error	Source of Error	Quoted uncertainty	Estimate of component standard uncertainty (1SD)	Combined uncertainties (1SD)	Combined uncertainty (1SD)	Expanded uncertainty (95% confidence limits)
	Precision-like E	Errors				
Random	Errors in setting to isokinetic conditions	<u><+</u> 1%	<u><+</u> 0.58%	<u>+</u> 4.66%		
	Minimum sampling time of 3 minutes	<u>+</u> 8%	<u>+</u> 4.62%			
Systematic						
	Accuracy-like E	Errors				
Random	Measure flue dimensions to ±10mm/m					
Systematic	Number of sampling points (see note below)	<u>+</u> 13%	<u>+</u> 6.63%		<u>+</u> 13.03%	<u>+</u> 25.5%
	Minimum weight gain	assume <u>+</u> 2%	<u>+</u> 1.5%			
	Pre=/Post-pitot reading within 10%	<u>+</u> 2.5%	<u>+</u> 1.44%	<u>+</u> 7.22%		
	Temperature variations of 10% on 150°C	<u>+</u> 1/5%	<u>+</u> 0.87%			
	Gas flow axis deviates up to 30°	<u><+</u> 3.5% velocity	<+2.02% velocity			

Note: Type A component uncertainty, quoted at 95% confidence limits. All other component uncertainties assumed to be Type B.

Table 2: Simple error analysis for measurement of mass flow particulates when not all the requirements of BS 13284-1 are met.

Deviation from standard: Only nearest 2 points of 4 on each of sampling lines can be reached (circular duct); pre/post sampling velocities differed by 20%;

Highest to lowest pitot reading 15:1.

iigiiest to lowes	st pitot reading 15:1.					
Type of Error	Source of Error	Combined uncertainties (1SD)	Combined uncertainty (1SD)	Expanded uncertainty (95% confidence limits)		
	Precision-like	Errors				
Random	Errors in setting to isokinetic conditions	<u><+</u> 1%	<u><+</u> 0.58%	<u>+</u> 4.66%		
	Minimum sampling time of 3 minutes	<u>+</u> 8%	<u>+</u> 4.62%			
Systematic						
	Accuracy-like	Errors				
Random	Measure flue dimensions to ±10mm/m ±2% ±1.15%					
Systematic	Number of sampling points, and highest: lowest pitot readings 15:1 (see note below)	<u>+(</u> 13+12)%=25%	<u>+</u> 12.78%		<u>+</u> 20.7%	<u>+</u> 40.8%
	Bias due to non-symmetrical points	<u>+</u> 7.5%	<u>+</u> 4.33%			
	Minimum weight gain	assume <u>+</u> 2%	<u>+</u> 1.5%	144 000/		
	Pre/Post-pitot readings differ by 20%	<u>+</u> 10%	<u>+</u> 5.77%	<u>+</u> 14.88%		
	Temperature variation of 10% on 150°C	<u>+</u> 1.5%	<u>+</u> 0.87%			
	Gas flow axis deviates up to 30°	<u><+</u> 3.5% velocity	<+2.02% velocity			
				1	1	1

Note: Type A component uncertainty, quoted at 95% confidence limits. All other component uncertainties assumed to be Type B.

	UNCERTA	INTY CALCU	LATIONS 2022;	ANTON SPRINT	PRO GAS ANALYSER	
CARBON DIOXIDE		ОХ	YGEN			
0	12	0	20.9	Xr		
0.03	12	0	20.9			
0.03	12	0	20.9			
0.03	12	0	20.9			
0.02	12.01	0	20.91			
0.03	12	0	20.9			
0.03	12.01	0	20.9			
0.03	12	0	20.9			
0.03	12.01	-0.01	20.9			
0.03	12	0	20.9			
0.03	12.01	0	20.9			
0.03	12	0	20.91			
0.03	12.00	0.00	20.90	Mean	X	
0.00	0.00	0.00	0.00	SD	S	
0.04	0.00	0.00	0.00	D = x - Xr		
0.35	0.10		0.07	Uncertainty	Ud = sqrt (3 x d)	
	12		20.9	Xr	Span Gases	
	1.30		1.30		Relative Uncertainty %	BOC
	20.00		25.00		Instrument Range	
	0.26		0.33		% / ppm Uncertainty	
	0.40		0.50		Linearity	Anton
	0.20		0.25		Zero Drift	Anton
	0.20		0.25		Span Drift	Anton
	0		0		Interferents % & ppm	Halcyon
	0.022		0.0275		Linearity % & ppm	Halcyon
	0.06		0.075		Zero SD	Halcyon
	0.03		0.0375		Span SD	Halcyon
	0.0012		0.00209		Atmospheric Pressure	Halcyon
	0.02		0.025		Voltage	½ of EN
	0.018		0.0375		Ambient Temperature	½ of EN
	0		0		Losses & Leakages	Halcyon
	0.1		0.1		Zero Drift % & ppm	Halcyon
	0.02		0.02		Span Drift % & ppm	Halcyon
Carbon	Dioxide	Ох	ygen			
Sum Sqs	0.0161094		0.0202231			
SqRt	0.126923		0.142208			
- 1				27277 Expanded Uncertainty		
- 1	0.248769		0.2787277	Expanded Unce	ertainty	

UNCERTAINTY CALCULATIONS 2022 VOC as C using Mini RAE FID						
783.1		82.3		8.25		Certified Values of propane conc in ppm
Mini RAE F	ID readings					
17.17	1.77	17.43	1.52	15.48	2.69	
17.16	1.79	17.43	1.52	15.55	2.69	
17.18	1.79	17.46	1.52	15.62	2.61	
17.14	1.77	17.51	1.52	15.58	2.63	
17.16	1.76	17.47	1.54	15.54	2.63	
17.14	1.77	17.43	1.52	15.54	2.63	
17.19	1.77	17.45	1.5	15.56	2.65	
17.14	1.78	17.41	1.5	15.66	2.67	
17.12	1.77	17.47	1.52	15.52	2.67	
17.14	1.78	17.43	1.5	15.6	2.65	
17.15	1.75	17.37	1.52	15.5		
17.15	1.77	17.44	1.52	15.56	2.65	Mean
0.02	0.01	0.03	0.01	0.05	0.03	SD
2.23	2.23	2.23	2.23	2.23	2.26	Students t p357 Stats Book
0.04	0.03	0.08	0.03	0.11	0.06	Repeatabilily SD x t
0.00	0.00	0.00	0.00	0.00	0.00	Bias = mean - true
0.04	0.03	0.08	0.03	0.11	0.06	Uncertainty bias = repeatability
0.26	1.43	0.45	1.69	0.72	2.22	Instrument Percentage Uncertainty
1.00	1.00	1.00	1.00	1.00	1.00	Gas Percentage Uncertainty
1.03	1.74	1.09	1.96	1.23	2.43	Overall Calculated % Uncertainty
<u>+</u> 2%	<u>+</u> 2%	<u>+</u> 2%	<u>+</u> 2%	<u>+</u> 2%	<u>+</u> 3%	Working Figures % of Reading

UNCERTAINTY FOR PAR PRINCIPAL UNCERTAIN					
Balance (PBS) at 100mg	= 0.022mg	95%		0.0220	0.0005
Volume Measurement (Schlumberger)(Labcal) 400L	= 0.5% of vol	2 litres	4	4.000	16.0000
	+ resolution	0.2 litres	0.025	0.1200	0.0144
DGM	= 2.3%			4.6000	21.1600
Change in DGM temperature	= 10/293			0.0341	0.0012
Change in atmospheric pressure	= 2/1013			0.0020	0.0000
No change in humidity (dry gas)					
No change in oxygen (LEV System)					
				Sum Sqs	37.1761
				Sq rt	6.0972
			Expand	ed Result	6.1%

UNCERTAINTY FOR HCI SAMPLING TO EN 13649: 2002 UNCERTAINTY FOR A SERIES OF DUPLICATE MEASUREMENTS OF HCI

Sd 0.141 mean 6.88 = + 2.06%

Double to allow for less good data (& / absolute accuracy & standards)

Double to 95% \pm 8.24 **Expanded Result =** \pm 8.20%

Continuous process = no change in humidity

V little change in temperature

Low flow pumps with counters, so not identical flows, but results divided by volume (Halcyon bubble flow meter cal)

Laboratories do not provide uncertainty estimates on analytical results

APPENDIX 2 CALIBRATION FILE

HALCYON ENVIRONMENTAL CALIBRATION RECORD LOG

Doc. Ref: CL001

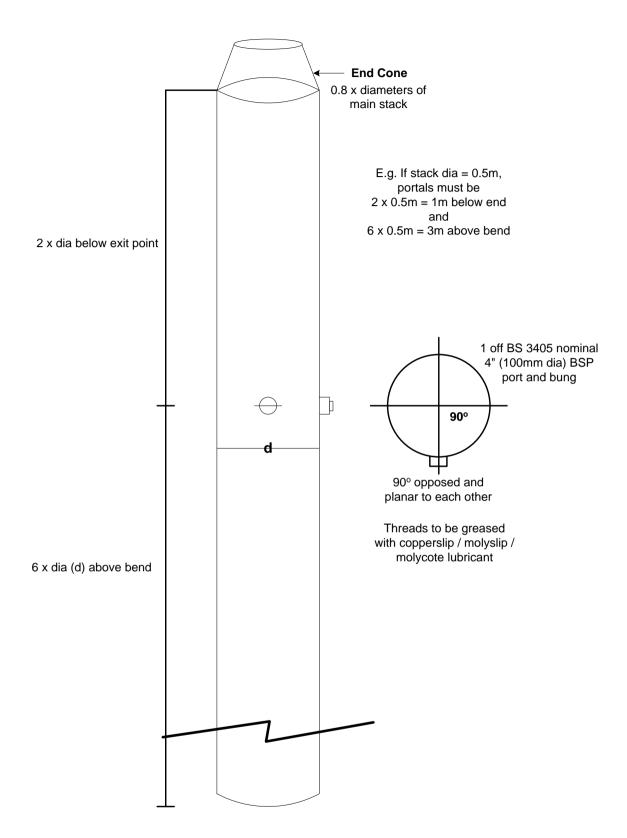
No.	Equipment	Serial Number	Model	Date of Calibration	Certificate Number
01	Airflow Developments	114575	PVM 100	As per supplied certificate	IC1146P
02	Airflow Developments	-	BS 1042 Pitot Tube	As per supplied certificate	IC1147P
03	Anton Gas Analyser	514360101B19	Sprint 6	As per supplied certificate	JMW
04	Anton Gas Analyser	514360102B19	Sprint 6	As per supplied certificate	JMW
05	PCE	150613856	PFM 2 Micro- manometer	As per supplied certificate	HE 21 / 1445
06	PCE	150613856	PFM BS 1042 Pitot Tube	As per supplied certificate	HE 21 / 1445
07	PCE	150613857	PFM 2 Micro- manometer	As per supplied certificate	HE 21 / 1446
08	PCE	150613857	PFM BS 1042 Pitot Tube	As per supplied certificate	HE 21/ 1446
09	SKC	06515934	Side Kick Low Flow Pump	As per supplied certificate	HE 21 / 1468
10	SKC	06515936	Side Kick Low Flow Pump	As per supplied certificate	HE 21 / 1469
11	SKC	06515938	Side Kick Low Flow Pump	As per supplied certificate	HE 21 / 1470
12	SKC	06515939	Side Kick Low Flow Pump	As per supplied certificate	HE 21 / 1471
13	SKC	06515933	Side Kick Low Flow Pump	As per supplied certificate	HE 21/ 1472
14	Airflow Developments	-	1m BS 1042 Pitot Tube	As per supplied certificate	HE 21 / 1452
15	Digitron with pitot and thermo micro anemometer	451097801	PM 80	As per supplied certificate	HE 21 / 1453
16	SKC	403208	224 – PCEXB Pump	As per supplied certificate	HE 21 / 1454
17	SKC	22721	Flow Meter	As per supplied certificate	HE 21 / 1467
18	Bubble Meter	22806	Optiflow 420	Monthly	HE 21 / 1456

Page 47

Issue Status:	14	15	16	17	18	19	20		Compiled:
Date of Issue	12/2015	01/2017	12/2017	04/2018	03/2019	12 / 2019	12 / 2020		T Growcott
Approved:									Halcyon Environmental

HALCYON ENVIRONMENTAL CALIBRATION RECORD LOG

19	Casella	-	880 NM Aerosol Dust Monitoring Kit	As per supplied certificate	HE 21 / 1480
20	Tecpel	-	Model 14 Hot Wire Anaemometer	As per supplied certificate	HE 21 / 1482
21	Honeywell	-	Toxipro Ammonia Monitor	As per supplied certificate	HE 21 / 1483
22	Canary	-	Digital Radon Gas Detector	As per supplied certificate	HE 21 / 1484
23	Gillian	000198/1	HFS 513 A High Flow Pumps	As per supplied certificate	HE 21 / 1494
24	Gillian	000198/2	HFS 513 A High Flow Pumps	As per supplied certificate	HE 21 / 1494
25	Gillian	000198/3	HFS 513 A High Flow Pumps	As per supplied certificate	HE 21 / 1494
26	Gillian	000198/4	HFS 513 A High Flow Pumps	As per supplied certificate	HE 21 / 1474
27	SKC	403208	Universal Air Sampling Pump	As per supplied certificate	HE 21 / 1502
28	RAE Systems	590 - 908492	Mini RAE Lite VOC/PID Unit	As per supplied certificate	HE 21 / 1507
29	AE	-	Sampling Head + 6mm tip	As per supplied certificate	HE 21 / 1605


Page 48

Issue Status:	14	15	16	17	18	19	20			Compiled:
Date of Issue	12/2015	01/2017	12/2017	04/2018	03/2019	12 / 2019	12 / 2020			T Growcott
Approved:										Halcyon Environmental

APPENDIX 3 STACK MONITORING POINT DIAGRAM

Stack velocity must be > 15m/sec to meet Process Guidance Note PG 1/12 provisions

APPENDIX 4 STATEMENT OF COMPETENCY

Halcyon Environmental 27 Brunel Grove The Woodlands Perton Wolverhampton WV6 7YD

Mobile: 07779 008725

E-Mail: tim@halcyon-environmental.co.uk

Qualifications: B Sc (Hons) Applied Chemistry

Member of the Royal Society of Chemistry MRSC

Chartered Chemist C Chem Chartered Scientist C Sci

Member of the Institute of Metal Finishing (MIMF) Member of the Source Testing Association (STA)

STA registration MM 03/314

Member of the American Chemical Society (MACS)

Current Position

Halcyon Environmental: Senior Partner

Responsible for the operation of a specialist environmental consultancy including sales and marketing, presentations, technical procedures, litigation protocol, analytical strategies and Environmental Management Systems Protocols.

Wests Duty of Care and Permitting Environment Agency

Halcyon Environmental is a consultancy specifically committed to advise and support Industrial and Private Sector clients in achieving and effectively maintaining compliance with existing and new environmental legislation and is a member of the Metal Finishing Association, Surface Engineering Association, Surface Testing Association and Shropshire Mosses and Meres Enterprise Group.

Courses Attended

2016

2016	waste Duty of Care and Permitting - Environment Agency
2016	Waste Management Qualifications – Enviro- stack Ltd
2016	Case Studies; The Benefit of Waste Management Solutions – Dunning Filkin
2016	Waste Management Implications of COPA 21 – FRM Ltd
2016	Hazardous Waste Classification – SMM Environmental Group
2011	Bruker; Introduction of Infra Red Spectroscopy
2009	Lanyard Training and Working at Height – Kingfisher Access Course
2008	STA M Certs Level 1 Training Course
2008	STA M Certs TE3 Revision Training; Gases and Vapours by Extractive Manual Measurement
2008	IEMA presentations

Introduction to the REACH Regulations Rolls Royce Sinfin

Introduction to the EUPD Environment Agency

Introduction to EPP Environment Agency

2001/2/3/4/7/8 PCME; Total Particulate Monitoring – Isokinetic, Triboelectric, Tribostatic,

Scintillation, Optical and CEM methods and systems

2007 PCME; On Line, Real Time Monitoring and Calibration

2007 Environmental Compliance (ECL): An Introduction to BS 14181

2007 Environmental Compliance (ECL): Gas Monitoring Systems

2007 CBiss - Instrumental Continuous Gas Monitoring Applications

2006 PCME; Particulate Monitoring Techniques and Calibration Methods

2006 Turbidity Monitoring Techniques; Partech Instruments

2006 PCME; Dust Reporter 2 Software and Filter Management

2006 PCME; Improving OMA Score/ Interpreting Guidance Notes

2006 PCME; PMT in the Metal Industries – Case Studies

2006 MCERT for Effluent Monitoring; Partech Instruments

2005 PCME; – Continuous Particulate Monitoring Systems (CEMS)

2002 PCME; Optical and Probe based Technologies for Emission Monitoring

2002 PCME; CEMS Analyser Systems

2002 PCME / C Biss; Cross Duct, Heated Extractive and Drying Extractive Techniques and

the requirements of CEMS Systems, MCERTS and OMA

2001 Disa An Introduction to Abatement Systems

2001 PCME Particulate Monitoring Solutions FMC

2001 PCME; Particle Velocity and Mass Monitoring Techniques FMC

2001 PCME; Ambient Monitoring Techniques FMC

2001 PCME; MCERTS and TUV Accreditation Schemes FMC

2000 PCME; Practical Demonstrations for TSP PM-10 and Pm 2.5 monitoring

2000 PCME; Monitoring of Suspended Solids in Gas Streams

2000 PCME; System Configuration and Reporting

2000 Servomex; The Continuous Monitoring of Gaseous Emissions

2000 PCME; Particulate Monitoring and the Workplace

1997	Air Pollution Standing Conference – NEC
1997	Monitoring as a Management Tool; SEC/ MFA Workshop
1997	FMEA to Design – Out Problems MFA / Ad – Qual Workshop
1997	Practical Application of Personal Protective Equipment – MFA / Racal Workshop
1997	Solid Wastes – A Finisher's Perspective; MFA
1997	Oven Temperature Control using Radio Telemetry; Grant Instruments
1997	Introduction to Air Sampling; SKC Ltd
1997	Profitability and the Monitoring and Control of Energy and Water; Marquis Associates
1996	European Perspectives on Environmental Best Practice; ERM
1996	Regulatory Developments in the UK WM Hazardous Waste Unit
1996	Thermal Sand Reclamation – Economic Drivers Towards Installation, Landfill Tax and its Consequences; Thermofire
1996	Metal Screen Filters as a Candidate for Best Practice; Air Filters
1996	Ceramic Filters and Secondary Metal Processing; Withers Metals
1996	Environmental Technology Best Practice Programme; ETSU
1996	Accounting for Environmental Performance; MRC
1996	Principle and Practice of Waste Management; Wedge Holdings
1996	The Waste Minimisation Agenda; UOW Workshop
1995	Air Pollution Standing Conference; NEC
1994	Eurosafe - Personal Protective Equipment; Assessing Needs and Choice
1994	GEC A Practical Approach to Health and Safety Management
1994	MOHS – Health Surveillance
1994	Government Policy Towards Business and the Environment – MFA Conference
1994	Engineering Industry and Environmental Pressure – MFA Conference /EEF
1994	Is BS 7750 Relevant to Metal Finishing; MFA Workshop
1994	EPA and the Metal Finishing Sector; MFA Workshop
1994	Environmental Management; Practical Implementation and Action; Business Link
1993	Environmental Education - WALCAT Workshop
1991	Clean Air Engineering: Environmental Source Monitoring

1991	Clean Air Engineering: Isokinetic Emission Monitoring
1991	SGS - Sports Ground Services - Introduction to Barrier Testing
1991	SGS - Hillsborough Barrier Enquiry – Measurement and Reporting
1991	SGS "Green Dove - EMS Sales Strategy"
1990	SGS "Principles of International Trade"
1990	SGS "Sales and Marketing - Value Added Strategies"
1990	SGS Yarsley "TQM Principles and Practices"
1990	SGS "Principles of Environmental Auditing "module 1"
1990	SGS "BS 5750 Auditing Protocols"
1990	SGS "Introduction to the Green Dove Strategy"
1990	SGS "BS 5750 Management Systems; Planned strategy"
1990	SGS Principles of Environmental Auditing "module 2"
1990	SGS CoSHH LEV Regulation 9.2 Inspection and Testing
1990	SGS -Statutory Inspection and Testing of LEVs (In house course)
1990	SGS - Principles of Cargo Full Out Turn Guarantee (FOG)
1990	SGS - Analysis of Fragrances and Perfumes
1990	SGS - Perfumes; Olfactory Odour Analysis
1989	SGS/Polymer Laboratories - Method derivation for the analysis of perfume samples
1989	SGS/Dyson - Method derivation for the analysis of perfume samples
1989	SGS - Method derivation for the olfactory analysis of perfume and fragrance samples
1989	SGS - Method derivation for the reporting of olfactory assessment of perfume and fragrance samples
1990	SGS - Analysis of Precious and Semi - Precious Metals (London Metals Exchange)
1990	SGS - Analysis of Gold and its alloys (London Metals Exchange)
1990	SGS - Analysis of Heavy Metals (Toy Testing Division)
1990	SGS - Analysis of Heavy Metals (Soil Testing)
1990	SGS - Analysis of Water Samples (Soil and Groundwater Testing)
1990	SGS - Litigation and International Liability - Perfume Fraud Investigations
1990	SGS - Analysis of Fuels (Aviation and Automotive)

1990	SGS - Vehicle Repair Centres; EPA Support and Monitoring
1990	SGS - Analysis of Cements and Concrete Testing
1990	SGS - Principles of Calibration and Metrology
1989	BASF - Source Testing
1989	BASF International Analytical Conference
1989	BASF - Principles of LIMS
1989	BASF - Selective Ion Electrode Analytical Methods
1989	BASF - HPLC Analytical Methods
1989	BASF - Gas Chromatography Analytical Methods; Column Selection
1989	BASF - Gas Chromatography Analytical Methods; Calibration
1989	BASF - Gas Chromatography Analytical Methods; Detector Selection
1989	BASF - Gas Chromatography Analytical Methods; Principles of Integration
1989	BASF - Infra Red Spectroscopy Analytical Methods
1989	BASF - Measurement of Molecular Weight Distribution by HPLC
1989	BASF/Polymer Laboratories – Method derivation for the analysis of acrylic resins; column selection and analytical methodology
1989	BASF/polymer laboratories – Knauer Instrumentation familiarisation
1989	BASF/Casella Environmental Monitoring Methods; Selection of Absorption Media
1989	BASF/Casella Environmental Monitoring Methods; Pumped and Passive sampling
1989	BASF/Casella – Field sampling of Acrylate Monomers
1989	BASF/Casella – Method derivation for the analysis of airborne Acrylate Monomers and Pre-polymers
1989	BASF/Casella – Method derivation for the analysis of airborne solvents
1989	BASF/Casella – Method derivation for the analysis of airborne Isocyanate Monomers and Pre-polymers
1989	BASF/Casella – Method derivation for the analysis of airborne Urethane Monomers and Pre-polymers
1989	BASF - Method derivation for the analysis of Polysiloxane Pre-polymers
1989	BASF - Method derivation for the analysis of Rolls Royce Paint and subsequent solvent adjustments
1989	BASF - Method derivation for the analysis of Vauxhall Motors Paint and subsequent solvent adjustments

1989	BASF - Method derivation for the analysis of Ford Motor Company Paint and subsequent solvent adjustments
1989	BASF - Method derivation for the analysis of Can Coating solvent / odour emissions
1989	BASF - Method derivation for the analysis of electrophoretic oven emissions
1989	BASF - Method derivation for the analysis of DETA/TETA electrophoretic solvent analysis and subsequent solvent adjustments
1989	BASF/Casella - Method derivation for the analysis of BL paints - site based
1989	BASF/Casella - Reporting of Environmental Emissions
1989	BASF/Perkin Elmer – GC/FID/ECD systems familiarisation
1988	Qualified First Aider CPR Procedures
1986	BASF Management and Motivation
1980	BASF/ Paint Research Association: Paint Formulation
1980	Wilkins and Mitchell/PPJ – Paint Management and Process Optimisation
1980	Wilkins and Mitchell/ICI VDU Management and Process Optimisation
1980	Wilkins and Mitchell/Tecalamit – Paint Management and Process Optimisation
1979	Wolverhampton Polytechnic: Advanced Analytical Procedures

Recent Awards, Presentations And Publications

2016	The History of Vaughtons – 200 years of Gold and Silversmithing for W H Darby
2016	Shropshire Mosses and Meres – Introducing EN 14001 EMS
2012	Alwin Metals ISO 14001 and 9001 – 2008 support
2010	Sealine International ISO 14001 support
2009	Coram Showers ISO 14001 support
2009	Kaby Engineers Ltd ISO 14001 support
2008	Road Show Speaker – West Bromwich Albion; REACH and its Implications
2007	Williams Alloys and Residues – support to ISO 14001
2006 – 2009	Monthly contributor to Corporate Times
2006	SEA meeting; House of Lords
2006	PCME Road Show Speaker – Ricoh Stadium
2005	Tonge & Taylor ISO 14001

2003	Calcast Limited ISO 14001
2003	C E Marshall (Wolverhampton) Ltd ISO 14001
2003	PCME Road Show Speaker; Celtic SFC
2002	Speaker - Cortec Seminar, University of Coventry - An Introduction to IPPC
2002	PCME Road Show Speaker; Manchester United FC
2002	Kings Triplex Holdings – ISO 14001
2001/4	PCME Road Show – Monitoring of Particulates – Workplace and Environment
2001	Lanstar ISO 14001
2001	Lanstar; Introduction to the Principles of Gas Chromatography
2001	Yale Security Products UK Ltd – ISO 14001
2001	Oldbury Aluminium Alloys Ltd. – ISO 14001
1998	World Metals Congress - Budapest. First 10 ISO 14001 foundries - Consultancy support to Transtec Group.
1998	Transtec Group - ISO 14001 - Birmingham, Droitwich, Llanidloes.
1998	Johnson Controls - ISO 14001 - Silloth and Wednesbury.
1998	MPL- Key Group - 1st Plastic Moulder to ISO14001 - Tamworth.
1998	MFA - Waste management and minimisation seminar.
1998	ISO 14001 -The Environmental Standard - BLB.
1997	JRI Technologies - 1st. Foam producer to ISO 14001.
1995	BS 7750 - A practical guide to compliance. Various industrial sites.
1995	"Environmental by Design" - fundamentals of design strategy seminars
1995	"Design for Disassembly" - fundamentals of product recycling and reuse.
1995	"Product Finite Life Analysis - Environmental Aspects" - GEC Group.
1995	Wolverhampton Centre of Engineering Excellence: "Safe usage, storage, handling and disposal of industrial liquids" seminars.
1995	Wolverhampton Centre of Engineering Excellence: EPA "Directors in the Dock" seminars.
1994	Wolverhampton Centre of Engineering Excellence: EPA Awareness workshop training.
1994	BLB: Practical Environmental Management.

1994	Birmingham Chamber of Commerce: EHS Management.
1994	Speaker - MPS "Environmental Awareness" Seminars.
1994	Inst. Elec. Engineers: EPA Evening presentation.
1994	Inst. Met. Finishing: Instrumentation and Capability.
1992	Metal Finishing Association: EPA Awareness Seminars.
1994	Transactions on the Inst. Met. Finishing: EHS legislation, effects on the M F Industry - Annual Technical Conference article.
1992	Ceramic Industries International: "Not Entailing Excessive Cost" EPA article.

Career Resume

Tim Growcott is the Senior Partner in Halcyon Environmental, a UK based consultancy, which specialises in Environmental Consulting Services. The consultancy works with around 500 company customers, from engineering to chemical specialists, foam and plastic users, MOD and RAF site's and specialist operators.

Trained formally as an Industrial Chemist, he has worked with companies including Mander Brothers in paints, BL Heavy Vehicles Division at Guy Motors in heavy vehicle manufacturing and Wilkins & Mitchell in domestic appliance manufacturing.

He worked with the Inmont Corporation and BASF in automotive and printing industry coatings development; this encompassed undertaking the short and long term formulation, testing and development of an extensive range of OEM primers, primer surfacers, underbody coatings and repair systems for British Leyland, Ford Dagenham, Peugeot, Jaguar Browns Lane, Rolls Royce (Crewe and London) and Vauxhall (Luton and Ellesmere Port). All of these locations used primary formulations in the corrosion prevention development programs operated at all sites. These programs were supported by specific method developments for product optimisation when in use.

As an Analytical Chemist this encompassed GC/FID/ECD, IR/Vis/UV spectroscopy, HPLC and SIE systems development. With further training in Munster this was extended to GC-MS, double de-gated NMR and Raman spectroscopy.

He then moved to SGS in specialist environmental roles, undertaking diverse environmental issues including sales, marketing, site investigation work, litigation and liability, the development of environmental systems including EN ISO 14001.

Within SGS, as Business Manager, this encompassed significant input to the Hillsborough Barrier Enquiry, London Metals Exchange Analyses, Perfume and Fragrance analyses for the determination of fraudulent products, the development of organic chemistry within the SGS matrix and extended Product Developments.

Halcyon has undertaken specific and broad spectrum environmental issues with regard to environmental compliance, forward business environmental planning, and cradle to grave strategies that include environmental significance in product design and manufacturing, product finite life analysis, design for disassembly and renewable and recyclable resources.

Halcyon was recognised by the World Metal Congress, held in Budapest in achieving EN ISO 14001 with one of its customers as one of the world's first 10 foundries to achieve the standard.

Halcyon personnel have supported the recent transfer of business from the mainland UK to Bulgaria and are developing business in Portugal.

The position is listed in Government Guidance as defined for Key Workers under the heading of Infrastructure.

He will be undertaking Environmental and H&S Monitoring in support of statutory compliance and regulatory provisions at an industrial premises in proximity to the defined hotel.

Utilities, communication and financial services

This includes:

 information technology and data infrastructure sector and primary industry supplies to continue during the coronavirus (COVID-19) response

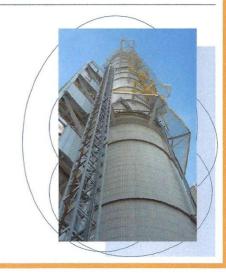
APPENDIX 5 STA CERTIFICATE

This certifies that;

Halcyon Environmental

Is a member of The Source Testing Association

Valid: | April 2021 to 31 Mar 2022


The STA is committed to the advancement of the science and practice of emission monitoring and to develop and maintain a high quality of service to customers.

Its aims and objectives are to:

- contribute to the development of industry standards, codes, safety procedures and operating principles;
- encourage the personal and professional development of practicing source testers and students;
- · maintain a body of current sampling knowledge;
- · assist in maintenance of a high level of ethical conduct;
- seek Cn-operative endeavours with other professional organisations, institutions and regulatory bodies, nationally and internationally, that are engaged in source emissions testing.

Signed on behalf of the STA:

